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Abstract

This thesis addresses two questions related to language. First, how do children learn the language-
specific components of their native language? Second, how is language grounded in perception? These
two questions are intimately related. One piece of language-specific information which children must
learn is word meanings. Knowledge of the meanings of utterances containing unknown words presumably
aids children in the process of determining the meanings of those words. A complete account of such
a process must ultimately explain how children extract utterance meanings from their non-linguistic
context. In the first part of this thesis I present, precisely formulated algorithms which attempt to
answer the first. question. These algorithms utilize a cross-situational learning strategy whereby the
learner finds a language model which is consistent, across several utterances paired with their non-
linguistic context. This allows the learner to acquire partial knowledge from ambiguous situations and
combine such partial knowledge across situations to infer a unique language model despite t he ambiguity
in the individual isolated situations. These algorithms have been implemented in a series of computer
programs which test this cross-situational learning strategy on linguistic theories of successively greater
sophistication. In accord with current hypotheses about child language acquisition, these systems use
only positive examples to drive their acquisition of a language model. MAIMRA. the first program
described, learns word-to-meaning and word-to-category mappings from a corpus pairing utterances
with sets of expressions representing the potential meanings of those utterances hypothesized by the
learner from the non-linguistic context. MAIMRA's syntactic theory is embodied in a fixed context-
free grammar. DAVRA, the second program described, extends MAIMRA by replacing the context-free
grammar with a parameterized variant of X theory. Given the same corpus as MAIMRA, DAVRA learns
the parameter settings for X theory in addition to a lexicon mapping words to their syntactic category
and meaning. DAVRA has been successfully applied. without change, to tiny corpora in both English
and Japanese, learning the requisite lexica and parameter settings despite differences in word order
between the two languages. KENUNIA, the third program described, incorporates a more comprehensive
model of universal grammar supporting movement, adjunction, and enmpty categ .;es. as well as more
extensive parameterization of its X theory component,. This model of universal grammar is based on
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recent linguistic tiheory and includes such not ions as thie DP hypol liesis V\P-jInterntal subjects. anq IV to- I
movement. KENUNIA iXs able to learn the l)aramet~ter settings of this modlel. as well as word-it -category
mapplings, in the presen(e of movement and enipty categories. The algorithms underlying .lIAI.NRA.
DA\'RA. and KENUNIA are presented in detail along with annotated example. depicting th'ir opeiation
on sample learning tasks.

In the second part of this thesis I present a novel approach to event perception, tilth irotest', of dt-
t.ermining when events described by simple spatial motion verbs such thro i. pick up. put. and ital k occur
in visual input. This approach is motivated by recent experimental studies of adult visual perception
and infant knowledge of object permanence. II formulating this approach I advance three claims about
event perception and the process of grounding language in visual perception. First. I claim that the no-
tions of support. contact, and attachment play a central role in defining tihe meanings of simple spatial
motion verbs in a way that delineates prototypical occurrences of events described by those verbs from
non-occurrences. Prior approaches to lexical semantic representation focussed primarily on inovemieni
and lacked the ability to incorporate these crucial notions into the definitions of simple spatial tiotion
verbs. Second. I claim that support, contact, and attachment relations between object, arte recovered
from images by a process of counterfactual simulation. For instance, one object supports another object
if the latter does not fall when the short-term future of the image is predicted. but does fall if t lie former
is removed. Such counterfactual simulations are performed by a modular imagination capacity. Third.
I claim that this imagination capacity, while superficially similar in intent to traditional kinematic sini-
ulation, is actually bascd on a drastically different foundation. This foundation lakes the proc'ss of
enforcing naive physical constraints such as substantiality, continuity. and attachment relations bet ween
objects to be primary. In doing so it sacrifices physical accuracy and coverage. This is in contrast to tet
traditional approach which achieves physical accuracy and coverage by numerical integration, relegating
the maintenance of constraints to a process of secondary importance built around the tnumerical inte-
gration core. A simplified version of this theory of event perception has been implemented in a program
called ABIGAIL which watches a computier-generated animated movie and produces a description of the
objects and events which occur in that movie. ABW;AIL's event perception processes rely on counter-
factual simulation to recover changing support, conttact, and attachment relations between objects in
the movie. Prior approaches to this task were based solely on determining the spatial relations between
objects in the image sequence, grounding verb meanings in static geometric predicates used to compute
those spatial relations without, counterfactual analysis. The detailed algorithms underlying the novel
implementation are presented along with annotated examples depicting its analysis of sample movies.

Thesis Supervisor: Robert C. Berwick
Title: Associate Professor of Computer Science and Engineering
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Chapter 1

Overview

This ti " addresses two questions related to language. First: How" do childrun (harn lh( languagi-
specific cornponents of thuir natire languag !' Second: How is language grounded In p rc phon'./ These
two questions are intimately related. One piece of language-specific information which children must
learn is word meanings. Knowledge of the meanings of utterances containing unknown words presumably
aids children in the process of determining the meanings of those words. A complete account of such
a process must ultimately explain how children extract utterance meanings from their non-linguistic
context. Thu.s the study of child language acquisition has motivated the study of event perception as a
means of grounding language in perception.

The long-term goal of this research is a comprehensive theory of language acquisition grounded in vi-
sual perception. This thesis however, presents more modest short-term accomplishments. ('urrently. the
language acquisition and perception components are the subjects of independent investigation. Part 1
of this thesis discusses language acquisition while part I1 discusses event perception. These two parts.
however, fit. into a common language processing architecture, which this thesis takes to be reflective of
the actual human language faculty. Figure 1.1 depicts this architecture. In its entirety. the architecture
constitutes a relation between linguistic utterances, the non-linguistic observations to which those utter-
ances refer, and a language model which mediates that mapping. The architecture itself is presumed to
be innate and universal, Any language-specific information is encoded in the language model. Language
acquisition can be seen as the task of learning that. language model from utterances paired with obser-
vations derived from the non-linguistic context, of those utterances. The language model to be acquired
is the one which successfully maps those utterances heard by a child to the observed events.

The language processing architecture divides into three processing modules which relate seven rep-
resentations. The language model contains two parts, a grammar encoding language-specific syntactic
knowledge, and a lexicon. The lexicon in turn contains two parts, one mapping words to their syntactic
categories and the other mapping words to their meanings. A parser relates utterances to their syn-
tactic structure. While the parser itself encodes universal syntactic knowledge, presumed to be innate.
the mapping between utterances and their syntactic structure is also governed by the language-specific
granmnar and the syntactic categories of words. A linker relates the meaning of an entire utterance.
represented as a semantic structure, to the meanings of the words comprising that. utterance, taken from
the lexicon. This mapping is presumably mediated by the syntactic structure of the utterance. Finally, a
perception module relates semantic structures denoting the meanings of utterances to the non-linguistic
observations referred to by those utterances.

This architecture can be though of as an undirected declarative relation. By specifying the direction
of information flow, the architecture can by applied to different tasks. Taking an utterance and language
model as input and producing predicted observations as output, constitutes using the architecture as

11



12 CHIAPTER'K 1. OVE-RVIEWl

utterance observation

syntactic semanticSstructures s '~t~~rusctr~es

Ssyntactic word

categories maig

grammar lexicon

language
model

Figure 1.1: A generic language processing architecture. It contains three processing modules: a
parser. a linker, and a perceptual component. that mutuallv constrain five representalions: the
input utterance, the syntax of that utterance, the meaning of that utterance. the visual perception
of events in the world, and a language model comprising a grammar and a lexicon. The lexicon
in turn maps words to their syntactic category and meaning. Given input comprising utterances
paired with observations of their use, this architecture can produce as output. a language model
which allows the utterances to explain those observations. The bulk of this thesis is an elaboration
on this process.

a language comprehension device. Taking an observation and language tiodel a.s input and producing
as output utterances that describe that observation constitutes using the architecture as a language
generation device. Taking an utterance paired with an observation as input and producing as otitput
a language model which allows the utterance to have an interpretation consistent with the observation
constitutes using the architecture as a language acquisition device. The first two applications of this
architecture are conventional and well-known. The third application, language acquisition. is the novel
application considered by this thesis.

Part I of this thesis addresses the two leftmost modules of the architecture from figure 1.1. namely
the parser and linker. It presents a theory, implemented in three different computer programs. for
deriving a language model from utterances paired with semantic structures denoting their meaning.
Part 1I of this thesis address the third module front figure 1.1, namely perception. It presents a theory.
again implemented as a computer program, for deriving semantic structures which describe the events
observed in visual input. As stated before, the long-term goal of this research is to tie these two
components together. Currently however, the two halves of this thesis are formulated using incompatible
representations of semantic structure. This is due primarily to the preliminary nature of this work. The
work on language acquisition predates the work on event perception and was formulated around a
semantic representation which later proved inadequate for grounding language in perception. While in
its details, the techniques presented in part. I of this thesis depend on the old representation. preventing
the joint, operation of the two programs, at a more general level the techniques transcend the part icular
representations used. This, combined with the fact that the semantic representation used in part I of
this thesis is still widely accepted in the linguistic community, precludes obsolescence of the material
presented in part. 1.

As part of learning their native language, children must learn at least three types of information:



d-t 0cateory apping-s. wor- -iening, mappinigs, and langtiage-sp ecilic svNtiact ic inforlinat loll
C ollect ively, this iniformnat ion is taken to constitute a language model. Part I of t Iiiý thesis disc Iilse.s
techniques for learning a language mtodel given litt~erances. pa ired with seniantic st ructuiires deniot ing
their meaning. The language miodel canl be seen a set of p~rop~osit ions. vaci dlenotinig soniw I ingihlistic fact
part ictular to thle language beinig learned. For example. thew langigagi ii iode1l r ILiglish iili 11.lt contain
tIe proposit~ions *lablt is a noun' Ifablh ieans table*, anid -preposit ions precede their comiplemuent .*.

Acquisit ion of thle language inodel might proceedl in stages. The proces.s of learning new proposit iotii
might be aided by propositions already acquired in previous stages. lo avoild infinite re-gress. however, thli
process intist tilt imately start with anl emipty language nmodlel containing no language-specific informiat ion.
The task of learning a language model with no prior latgtuage-specihic informtat ion has becomiw knowii a
language bootstrapping. The mtodels explored iii part I of this thlesis address languiage boolstrapping.

The language bootstrapping task is illustrated by the following small example. Let uts assuime
that the learner hears the utterance JIoh n tialkfd to school. In addit ion. let uts assume that thle
learner canl discern the nmeaninig of that utterance fromi its nton-linguist ic context. Furthernmore. let
us take XNALK(Johin.TO(school) ) to be the representat ion of that tmeatiing. The learner would at-
tempt to fornm an analysis of this input which was consistent with her model of universal gramnmar. For
instance, the learlier might postulate the following anialNysis.

S
WALK(Jobhn, TO( school))

N P V P
John WNALK(.r. TO(school))

JoIth it
N lu'alAkd P P

John NV TO(school)
WVALK(.r, y)

to N P
P school

TO(X) I
sch ool

N
school

If the learner could determine that this analysis was correct, she could add a number of propositions
to her language model, including 'John is a noun',. 'John means John'. and] -prepositions precedle their
compleenetts'. Unfortunately, the following analysis might also be consistent with thle learner's model
of universal grammiar.

1
Throughout this thesis, words in italics denote linguistic tokens while words in boldface. or tTPPER CASE denote

semantic represent at ions of word meanings. Furthermore. there is not prior correspondence between a linguistic ioken such
as, tablf and a semantic token such as table, even though they share the same spelling. They are treated as tininterpremed
tokens. The task faced by the tearner is to acquire the appropriate correspondences as word-to-meaning mappings.
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S
"WALK(Johu, TO (school))

\VALK(i-. TO(school)) John

,ch ool
John P P N

V TO(school) Jolu,

WALK(j., y)
NP to

school P
I TO(x)

walked
N

school

If the learner adopted this analysis, she would incorrectly augment her language model with the propo-
sitions 'John is a verb'. 'John means WALK(x, y)', and 'prepositions follow their conmplements'. During
later stages of language acquisition. the partial language model might aid the learner in filtering out
incorrect analyses. Such assistance in not available during language bootstrapping however.

Many competing theories of language acquisition (cf. Pinker 1984 and Lightfoot 1991) address this
problem by suggesting that the learner employs a conservative trigger-based strategy whereby she aug-
ments her language model with only those propositions that are uniquely determined given her current
language model and the current input utterance taken in isolation. In the above situation, trigger-based
strategies would not make any inferences about, the language being learned since such inferences could
not uniquely determine any language-specific facts. Trigger-based strategies have difficulty explaining
language bootstrapping due to the rarity of situations where an input utterance has a single analysis
given a sparse language model.

This thesis adopts an alternative cross-situational learning strategy to account for language boot-
strapping. Under this strategy, the learner attempts to find a language model which is consistent across
multiple utterances. Each utterance taken in isolation might admit multiple analyses while the collection
of several utterances might allow only a single consistent analysis. This allows the learner to acquire
partial knowledge from ambiguous situations and combine such partial knowledge across situations to
infer a unique language model despite the ambiguity in the individual isolated situations. For example,
the learner could rule out the second analysis given above upon hearing the utterance Mary u'alkld to
school paired with WALK(Mary.TO(school)) since this utterance does not admit an analysis which
takes school to mean John. This cross-situational approach thus also alleviates the need to assume prior
knowledge, since all such knowledge can be acquired simultaneously by the same mechanism. A naive
implementation of cross-situational learning would require the learner to remember prior utterances to
make a collection of utterances available to cross-situational analysis. Such an approach would not be
cognitively plausible. Part, I of this thesis explores a number of techniques for performing cross-situational
learning without keeping track of prior utterances.

Let me elaborate a bit on my use of the term cross-situational. While learning language, children are
exposed to a continual stream of situations where they hear utterances in their non-linguistic context.
Intuitively, the term cross-situational describes a strategy whereby the learner acquires language by
analyzing multiple situations. Clearly, a child cannot learn her entire native language from a single pair
of linguistic and non-linguistic observations. Thus in a trivial sense, all learning strategies are cross-
situational. This thesis however, uses the term to describe a very particular strategy, one whereby the



15

learner finds a single language model which can consistently account for all of thle observxed situations.
A language model must meet two criteria to account fbr an observed sit nation. first. it ilnuIt allow
the utterances heard in that situation to be syntactically well-formned. Second, it mu.st allow those-
ut terances to be senmant ically true and relevant to their non-linguist ic context. Thiis using t his st rat egy.
the learner applies all possible syntactic and semantic constraints across all of thle oh servd sitnatiolns
to the language acquisition task. This strategy is described in greater detail iu chapter :3 where it is,
called strong cross-situational learning. This strategy dates back at least to (Chonisky (19(65). This thesis
renders more precision to this strategy and tests it on several concrete linguistic theories.

It is instructive to contrast this strategy with a number of alternatives. Gold ( 1967) describes a
strategy whereby the learner enumerates the possible language models {LI. L. ..... . first adopting thlit
language model L1 and subsequently switching to the next language model ill the sequence whleli the
current language model cannot account for the current observation. Hamburger and \W'exler (19715)
describe a variant of this strategy where learner does not try the alternative language models in any
particular enumerated order but rather switches to a new language model at random when the current
language model fails to account for the observation. The new language model is restricted to be related
to the previous language model by a small number of change operators. These strategies are weaker
than strong cross-situational learning since when the learner switches to a new language model that
is consistent with the current observation, she does not check that it is also consistent with all prior
observations.

The strategy adopted by Gold does not impart any structure on the language model. It is often
natural, however, to view the language model as comprising attribute-value pairs. Such pairs may repre-
sent word-t o-category mappings. word-to-meaning mappings, or values of syntactic parameters. Anot her
common learning strategy is to form the set of alternate values for each attribute that are consistnt with
each utterance as it. is processed and intersect those sets. The value of an attribute is determined when a
singleton set, remains. Pinker (1987a) adopts this strategy to describe the acquisition of word-to-meaning
mappings. More generally it cati be used to learn any information represented as attribute-value pairs.
including word-to-category mappings and syntactic parameter settings. Chapter :1 refers to this strategy
as weak cross-situational learning and demonstrates that, it is weaker than strong cross-situational learn-
ing. This reduction in power can be explained simply as follows. Consider a language model with two
attributes a, and a, each having two possible values cl and v2. Nominally. this would allow four distinct
language models. It may be the case that setting ai to i'1 is mutually inconsistent wit Ii setting a., to •2.
even though all three remaining possible language models are consistent. It is impossible to represent
such information using only sets of possible attribute values since in this case, there exists some language
model consistent with each attribute-value pair in isolation. Thus weak cross-situational learning imay
fail to rule out. some inconsistent language models which would be ruled out by strong cross-situational
learning.

Strong cross-situational learning is a powerfil but computationally expensive technique. Some of
the implementations discussed in chapter 4 do use full strong cross-situational learning. For reasons of
computational efficiency, however, some of the implementations. use weaker strategies. These weaker
strategies differ from both weak cross-situational learning and the enumeration strategies described
above. They will be described in detail in chapter 4.

The actual language learning task faced by children is somewhat more complex than the task por-
trayed by the example described earlier. That example assumed that the learner could determine the
correct meaning of an utterance from context and simply needed to associate parts of that meaning wit Ih
the appropriate words in the utterance. It. is likely however, that children face referential uncertaintY
during language learning, situations where the meaning of an utterance is uncertain. They might be
able to postulate several possible meanings consistent. with the non-linguistic context of an utterance
but, might not be sure which of these possible meanings is the correct meaning of the utterance. Un-
like trigger-based strategies. cross-situational learning techniques can learn in the presence of referential
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uncert ainty.

Part I of this thesis applies a cross-situational learning strategy to the task of learning a laiiguago,
model comprising word-to-category mappings. word-to-mneaning mappings, and language-spec ific com1-
ponents of grammar. without access to prior language-specific knowledge, given utterance-mneaning pairs
which exhibit referential olcertainty. This strategy has been implnemnted in a series of coinputer pro-
grams which test this strategy on linguistic theories of successively greater sophistication. it accord
with current hypotheses about child language acquisition, these systems use only positive examples to
drive their acquisition of a language model. The operation of DAVRA is typical of these programs.

Figure 1.2 illustrates a sample corpus presented as input to DAVRA. Note that this corpus exhibits
referential uncertainty in that each utterance is paired with several possible meanings for that Utter-
ance. Given this corpus. DAVRA call derive the language model illustrated in figure 1.3. DAVRA learns
that English is head-initial and SPEC-initial. Furthermore. DAVRA learns unique word-to-category and
word-to-meaning mappings for most of the words in the corpus.

Part I of this thesis discusses three language acquisition programs which incorporate cross-situational
learning techniques. MAtMRA, the first program developed, learns word-to-meaning and word-to-
category mappings from a corpus pairing utterances with sets of expressions representing the potential
meanings of those utterances hypothesized by the learner from the non-linguistic context. NIAtMRA'S

syntactic theory is embodied in a fixed context-free grammar. I)AVRA. the second program developed.
extends MAIMRA by replacing the context-free grammar with a parameterized variant of X theory. Given
the same corpus as MAIMRA, DAVRA learns the parameter settings for X theory in addition to a lexicon
mapping words to t-heir syntactic category and meaning. DAVRA has been successfully applied, without
change, to tiny corpora in both English and Japanese, learning the requisite lexica and parameter settings
despite differences in word order between the two languages. KENUNIA. the third program developed.
incorporates a more comprehensive model of universal grammar supporting movement. adjunct ion. and
empty categories, as well as more extensive parameterization of its X theory component. This model of
universal grammar is based on recent linguistic theory and includes such notions as the DP hypothesis.
VP-internal subjects, and V-to-I movement. KENUNIA is able to learn the parameter settings of this
model, as well as word-to-category mappings, in the presence of movement and empty categories. All of
these programs strive to model language bootstrapping, with little or no access to prior language-specific
knowledge, in the presence of referential uncertainty. Chapter 4 will present. in detail, the algorithms
underlying MAIMRA, DAVRA, and KENUNIA along with annotated examples depicting their operation
on sample learning tasks.

Part II of this thesis addresses the task of grounding semantic representations iii visual perception.
In doing so it asks three questions, offering novel answers to each. The first question is: Wi hat is an
appropriate semantic representation that can allow language to be grounded in perception? Chapter 7
advances the claim that an appropriate semantic representation for the nwanings of simple spatial
motion verbs such as throw, pick up, put. and walk must incorporate the notion:- f support, contact, and
attachment as these notions play a central role in differentiating occurrences of events described by those
words from non-occurrences. Prior representations of verb meaning focussed on the aspects of motion

depicted by the verb. For example. Miller (1972), Schank (1973), Jackendoff (1983), and Pinker (1989)
all gloss throw roughly as 'to cause an object to move'. This misses two crucial components of throwing--
the requirement that, the motion be caused by moving one's hand while grasping the object (contact and
attachment) and the requirement that the resulting motion be unsupported. Chapter 7 presents a novel
lexical semantic representation based on the notions of support, contact, and attachment, and uses that
representation to characterized the prototypical events described by numerous spatial motion verbs.

Given that support, contact, and attachment relations play a central role in defining verb meanings.
a natural second question arises: How are support, contact, and attachment relation.s b(twcn objects
perceived? Chapter 8 offers an answer to that question: counterfactual simulation--imagining the short-
terni future of a potentially modified image under the effects of gravity and other physical forces. For
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BE (person1 . AT( person3 )) V BE (person1 . AT( person. ) ) V
GO(persou1 , [path ]) V (0(person1 . FROM(person:3 ))V

GO( person1 . TO( person2))) V GO(person1 . [PatIh F ROM (perSo'13). TO( person.9 )])
Joh n roffid.

BE( person9, AT( person3 )) V BE (person9 . AT(person1 ))V
(,'O( person2 . [Path ]) V GO( person9 . FROMt( persoii3 )V

GO(person9 . TO(person1 )) V GO(person9 . [pa,,, FROM(perSon.3), To(person1 )])
.1ary rolled.

BE( person3 , AT( person1 )) V BE(persoU3 . AT( person,) )V
GO(person 3 , [Path ]) V GO(person 3. F ROM (person 1 ) )V

GO( person3 , TO(person2))) V GO( person3 , [pati, F ROMI(person 1 ). TO( person.,)])
Blld rolled.

BE(object1 . AT( person1 )) V BE(object 1 . AT(person.,) )V
GO(objecti, [Path ]) V GO(object1 , FROM (person, ))V

GO(object1 , TO(person2))) V GO(objectj, [Path FROM(person1 ). TO(person,)])
The cup rolled.

BE(person 3, AT(person1 )) V BE(perSO1n3 , AT(person.,))V
GO( person3. [Path ]) V GO(person3 , FROM(person1 ))V

GO(person3 . TO(person,)) V GO(person 3 , [Path FROM(person1 ). TO(pe..son.,)])
Bill ran to Maryj.

BE( person3 , AT( person1 )) V BE( person13 , AT( person9 ) )V
GO(person 3 , [Path ]) V GO(person 3 , FROM (person1 ))V

GO( person3 , TO( person2 )) V G.O(person 3. [Path FROM (person1 ). TO( person2 )])

Bill ran from John.
BE(person 3 , AT(person1 )) V BE(person3 , AT(object1 ))V
GO(person 3 , [Path ]) V GO(person 3 . FROM(person ) )V

GO( person3 , TO(object1 )) V GO(person 3 , [Path FROM( person1 ), TO( object1 )])
Bill ran to the. cup.

BE(objectl, AT(personj)) V BE(objectl,.AT(person2 ,))V
GO(objectl, [Path ]) V GO(objectl, FR.OM(person1 ))V

GO(object1 . TO(person2 )) V GO(objectl, [path FROM (person1 ), TOC person9 ,)])
The cup slid from John to Ala j.

ORTENT(person 1 , TO(person,))V
ORIENT(person 2 . TO(person 3 ) )V
ORIENT(person 3 , TO(personj))

John faced Mlary.

Figure 1.2: A sample corpus presented t~o Davra. The corpus exhibits referential uncertainty in
that each utterance is paired with several possible meaning expressions. Davra is not told which is
the correct meaning, only that one of the meanings is correct.



18 ('HAPTER 1. OVERVIEWV

Head Initial, SPEC Initial.
John: [N] person1
Mary: [N] person.,
Bill: [N] person3
cup: [N] object1
th(: [NSPEC] 1

rotted: [V] (0(.r. ])
ran: [V] (;O(.r, y)
slid: [V] CO(r. [Pah YI. z])
faced: [V] ORIENT(.r. TO(y))
from: [N,',P] FROM(.)
to: [N,V.P] TO(t)

Figure 1.3: The language model inferred by Davra for the corpus from figure 1.2. Note that Davra
has converged to a unique word-to-meaning mapping for each word in the corpus, as well as a unique
word-to-category mapping for all but two words.

instance, one determines that an object is unsupported if one imagines it falling. Likewise, one determines
that an object A supports an object B if B is supported but falls when one imagines a world without A.
An object. .4 is attached to another object, B if one must hypothesize such an attachment to explain the
fact that. one object, supports the other. Likewise. two objects must be in contact if one supports the
other.

Counterfactual simulation relies on a modular imagination capacity. This capacity takes the rep-
resentation of a possibly modified image as input and predicts the short-term consequences of such
modifications, determining whether some predicate P holds in any of the s-rics of images depicting the
short-term future. The imagination capacity is modular in the sense that. the same unaltered mechanism
is used for a variety of purposes, varying only the predicate P and the initial image model between
calls. This leads to the third question: How does the imagination capacity operate? Nominally. the
imagination capacity can be though of as a kinematic simulator. To predict the future, this simulator
would embody physical knowledge of how objects behave under the influence of physical forces such
as gravity. Traditional approaches to kinematic simulation take physical accuracy and the abililty to
simulate mechanisms of arbitrary complexity to be primary. They typically operate by integrating the
aggregate forces on objects, relegating collision detection to a process of secondary importance.

Human perception appears to be based on different principles however. These include the following.

substantiality: Solid objects don't. pass through one another.

continuity: Objects follow continuous paths when moving from one location to another. They don't
disappear and reappear elsewhere later.

gravity: Unsupported objects fall.

ground plane: The ground acts as universal support for all objects.

These principles are pervasive. It is hard to imagine situations that, violate these principles. Traditional
kinematic simulation, however, violates some of these principles as a matter of course. Numerical
integration violates continuity. Performing collision detection exogenous to numerical integration will
admit substantiality violations up to the tolerance allowed by the integration step size. Thus traditional
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approaches to kinematic simulation do not appear to be appropriate foundation., for a niodel of thle
human imagination capacity.

Chapter 9 advances the claim that the imagination capacity used for counterfactual simulation and
event perception is organized along very different lines than traditional kinematic simulator,. It diret lv
encodes the princip)les of substantiality, continuity. gravity, and ground plane. It takes collision dethection
to be primary and physical accuracy to l)e secondary. In doing so it must forego the ability to simulate
mechanisms of arbitrary complexity. The reason for this shift in priorities is that collision delection is
more important than physical accuracy in determining support, contact, and at tachlient relalions.

Chapters 8 and 9 review some experiments reported by Freyd et al. (1988). Baillargeon et al. (.19•).
Baillargeon (1986, 1987) and Spelke ( 1988) which support the claims inade in part 11 of this lhesis. As
additional evidence, a simplified version of this theory has been implemented as a working computer
program called ABIGAIL. ABIGAIL watches a computer-generated animated movie depicting objects
participating in various events. Figure 1.4 illustrates selected frames from a sample movie shown to
ABIGAIL. The images in this movie are constructed out of line segments and circles. The input to
ABIGAIL consists solely of the positions, orientations. shapes, and sizes of these line segments and
circles during each frame of the movie. ABIGAIL is not told which collections of line segments and circles
constitute objects. By applying the techniques described above. she must segment t lie image into objects
and determine the support, contact, and attachment relations between these objects as a foundation for
producing semantic descriptions of the events in which these objects participate. For example. ABIGAIL
can determine that the man is unsupported in frame 11 of the movie by imagining him falling, as depicted
in figure 1.5.

The remainder of this thesis is divided into two parts comprising nine chapters. Chapters 2 through 3
constitute part I which discusses language acquisition. Chapter 2 introduces part I by defining the
bootstrapping problem and giving an overview of the cross-situational techniques used to address that
problem. Chapter 3 illustrates the power cross-situational learning has over trigger-based approaches by
demonstrating several small examples, completely worked through by hand. where cross-sit uatioonal tech-
niques allow the learner to converge on a unique language model for a set of utterances even though each
utterance in isolation admits multiple analyses. Chapter 4 presents a detailed discussion of NIAINIRA.

DAVRA, and KENUNIA-three inmplemented computer models of language acquisition which incorporate
cross-situational techniques. Chapter 5 concludes part I by reviewing related work on language acqui-
sition and suggesting continued work for the future. Chapters 6 through 10 constitute part II which
addresses the grounding of language in perception. Chapter 6 introduces part 11 by describing the event
perception task faced by ABIGAIL. Chapter 7 presents a novel lexical semantic representation centered
around the notions of support, contact, and attachment, giving definitions in this representation for
numerous simple spatial motion verbs. Chapter 8 discusses the event perception mechanisms used by
ABIGAIL to segment images into objects and to recover the changing support. contact, and attachment
relations between those objects. Chapter 9 discusses ABIGAIL's imagination capacity in detail. showing
how the imagination capacity explicitly encodes the naive physical constraints of substantiality, con-
tinuity. gravity, and ground plane. Chapter 10 concludes part I1 by reviewing related work oii event
perception and suggesting continued work for the future.
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Frame 0 Frame 299

Frame 29 Frame 356

Frame 64 Frame 403

Frame 69 Frame 509

Frame 71 Frame 662

Frame 112 Frame 730

Frame 144 Frame 750

Frame 200 Frame 780

Figure 1.4: Several key frames depicting the general sequence of events from the movie used t.o drive

the development, of Abigail.
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Frame 11, Observed Image

Frame 11. Imagination Step 1

Frame 11, Imagination Step 2

Frame 11, Imagination Step 3

Frame 11, Imagination Step 4

Frame 11, Imagination Step 5

Frame 11, Imagination Step 6

Figure 1.5: The sequence of images produced by Abigail while imagining the short-term future of
frame 11 from the movie described in figure 1.4.
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Chapter 2

Introduction

We call all agree that, as part of the process of acquiring their native language, children, must learn at
least three things: the syntactic categories of words, their meanings, and thlie language-specific coripo-
nIents of syntax. Such knowledge constitutes, at least in part. the language-specific linguistic knowledge
which children must acquire to becomni fluent speakers of their native language. Initially, children lack
any such language-specific knowledge. Yet they conie to acquire that knowledge through the language
acquisition process. Part I of this thesis attempts to answer the following question: What proc(dur( miqht
children employ to lharn their natir( language. without any acccss to preriously acquirtd languag -spmcific
knowledge'?

This question is not new nor is this the first attenmpt at providing an answer. The account offered in
this thesis, however, differs from prior accounts in a number of ways. These differences are suninarized
by three issues highlighted in the question's formulation.

procedure: This thesis seeks a procedural description of the language acquisition process. To be all
adequate description, the procedure must be be shown to work. Ideally, one must demonstrate that
it. is capable of acquiring language given the same input, that is available to children. Pinker (1979)
calls this the fidelity criterion. Such demonstration requires that the procedure be precisely spec-
ified. Imprecise procedural specifications, typical of much prior work on language acquisition in
cognitive science,i admit only speculative evidence that such procedures do actually work and
are therefore an inadequate account of the language acquisition process. Ultimately. the most
satisfying account would be a procedural specification which is precise enough so that, at least ill
principle, it, could be iniplemented as a computer program. This thesis presents three differeiit pre-
cise procedures, each implemented a~s a working computer program which successfully solves very
small language acquisition tasks. The input to these programs approximates the input available
to children.

might: An ultimate account of child language acquisition would denionstrate not only a working lan-
guage acquisition procedure but also evidence that that procedure was the one actually used by
children. This thesis demonstrates only that certain procedures work. It makes no claim that
children utilize these procedures. Clearly, it, makes sense to suggest that children employ a given
procedure only once one knows that the procedure works. Doing otherwise would be putting the
cart. before the horse. This thesis views the task of proposing working procedures, irrespective of
whether children employ these procedures, as the first step toward the ultimate goal of deteriniing
the procedures utilized by children.

'Notable exceptions to inmprecise procedural specifications include the work of Hanmburger and Wexler (1975) and

Berwick (1979. 1982).
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without any prior access to previously acquired language-specific knowledge: To be a coM-
plete account, a language acquisition procedure must not rely on previously acquired language-
specific knowledge. Doing so only reduces one prol)lem to another unsolved prolblem. Thie prolvilt
of how children begin the task of language acquisition, wit hout any prior language-specitic knowl-
edge, has become known as the Ibootstraplping problem. Most previous accounts assuntl that
children possess some language-specific knowledge. such as the meanings or syntactic cat igories
of nouns, before beginning to acquire the remaining language-specitic information. Since these
accounts do not present methods for acquiring such preliminary language-specific knowledge. they
at worst suffer from problems of infinite regress. At best they describe only part of the laguage
acquisition process. While it may be the case that the language acquisition procedure emnployed
by children is indeed a staged process, to date no one has given a complete account of that en-
tire process. In contrast, the goal of this research program is to propose algorithms which do
not rely on any prior language-specific ki.owledge. Significant progress has been made toward
this goal. Chapter 4 presents three implemented language acquisition models. In accord with
current hypotheses about child language acquisition. these systems use only positive examples to
drive their acquisition of a language model. The first learns both word-to-category and word-to-
meaning mappings given prior access only to granunar. The second learns both word-to-category
and word-to-meaning mappings, as well as the grammar. The third learns word-to-category map-
pings along with the grammar, given prior access only to word-to-meaning mappings, All of these
models, however, assume prior access to the phonological and morphological knowledge needed to
acoustically segment an utterance into words and recognize those words.

Part I of this thesis focuses solely on language bootstrapping. The remainder of this chapter
describes the bootstrapping problem in greater detail. It makes precise some assumptions this thesis
makes about the nature of the input to the language acquisition device, as well as the language-specific
knowledge to be learned. Some competing theories about language acquisition share a common learning
strategy: they attempt to glean linguistic facts from isolatcd obsfrratow.s. I call this strategy trigger-
based learning. This thesis advocates an alternative strategy, cross-situational learning, and suggests
that, it. may offer a better account, of child language acquisition.

2.1 The Bootstrapping Problem

The task of modeling child language acquisition is overwhelmingly complex. Given our current lack of
understanding, along with the immensity of the task, any proposed procedure will necessarily address
only an idealization of the task actually faced by children. Any idealization will make assumptions about
the nature of the input to the language acquisition device. Furthermore, any idealization will address
only a portion of the complete language acquisition task, and consider the remainder to be external
to that task. Before presenting the language acquisition procedures that I have developed. I will first
delineate the idealized problem which they attempt to solve.

I assume that the input to the language acquisition device contains both linguistic and non-linguistic
information. It seems clear that the input, must contain linguistic information. Assuming that the input
contains non-linguistic information deserves some further discussion. Practically everyone will agree
that non-linguistic information is required for learning the meaning of words. As Fisher et al. (1991)
aptly state: "You can't learn a language simply by listening to the radio". It is not clear however.
that. non-linguistic information is required for learning syntax. The tacit assumption behind the en-
tire field of formal learning theory (cf. Gold 1967 and Blum and Blum 1975) is that a learner can
learn syntax, or at least the ability to make grammaticality judgments. by observing linguistic infor-
mation alone. It, might be the case that this is feasible. Furthermore, both Gleitman (1990) and
Fisher et, al. (1991) suggest, that., at, least in part, verb meanings are constrained by their subcategoriza-
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tion frames. Brent (1 989 1990. 1991.a. 1991b, 1991 c) shows how verb sul cat egorizat ion franles can ",,
derived from an unt agged corpus of ut t erances wit hout any non-linguistic infOrniat ion.- Tlhough iieit her
Wleitman. Fisher et al.. nor Brent suggest this. it is conceivable that a learner could pot entially learn
all of syntax. and some semantics. through exposure to linguistic infornmation alone. \W'hether or no1
children (10 so is an open question. Nonietheless. the procedures present ed in this ihliesis utilize bothI lin-
guistic and non-linguist ic infornmat ion it the proces., of in ferrinig hot h synt act ic and sei'ant ic knowledg,,e
as is in fact typical of' most other work in the field.

InI tile muodel considered here, tile linguistic input to the language acquisition device is, a synioli"c
token stream consisting of a list of graiuuatical utterances. each utterance being a string of words.

Since, the actual linguistic evidence available to children consists of all acoustic signal. tihis assuniuis
that children have the capacity for segmenting thle acoustic stream into itterances and words, as well
as classifying different occurrences of a given word as the same symbolic token despite differences in
their acoustic waveform. These segmentation and classifications procedures. however, art, likely to rely
at least in part on language-specific information. An ultimate account of language acquisition would
have to explain how children acquire such word segmentation and classification knowledge along wit Ii
other language-specific knowledge. For pragmatic reasons, the language acquisition procedures prop)osed
in this thesis, like most other proposed procedures. ignore this problhei and assum*e that thle learner
has the ability to preprocess the acoustic input to provide a synbolic token stream as input to tlie,

language acquisition device. Also. like most other proposed procedures, this thesis assumes that thle
symbolic information recovered from the acoustic input comprises only word and utterance boundary
informat~ion and word identity. Gleitman (1990) and Fisher et al. (1991) argue that children call also
recover information about syntactic structure from the prosodic portion of the acoustic signal and that
they utilize such information to aid the language acquisition process. It may be possible to exteind thle
strategies discussed in this thesis to use such prosodic information in a way that would improve thheir
performance. Such exploration remains for future work.

The general learning strategy put forth in this thesis is one ofcross-situational learning. This strategy
is depicted in figures 2.1 and 2.2. It is incorporated, with minor variation. in all three of the implemented
systems discussed in chapter 4. Figure 2.1 illustrates a general language processing architecture. This
architecture is a portion of the more complete architecture depicted in fii'ure 1.1. The perception
component has been omitted as that will be the focus of part II of this thesis. Part I of this thesis instead
focuses on the remaining two processing modules, namely tihe parser and linker. These two processing
modules relate six representations. The parser takes an utterance as input and produces syntactic
structures as output,. The parsing process uses language-specific syntactic knowledge, in the form of a
grammar, along with the syntactic categories of words derived from the lexicon. Taken together, the
grammar and lexicon form a language model. The linker implements compositional semlantics. combining
the meanings of individual words in the utterance, taken from tile lexicon, and producing a semantic
structure representing the meaning of the entire utterance. This linking process is mediated by the
syntactic structure produced by the parser.

Traditionally, the architecture in figure 2.1 is conceived of as being a directed computing device.
As a language comprehension device, it receives an utterance, a grammar, and a lexicon as input.
and produces (perhaps several ambiguous) semantic structures as output. These semantic structures
constitute a representation of the meaning of the input utterance. As a language production device.
it receives a communicative goal as input,, in the form of a semantic structure, along with a grammar
and a lexicon, and produces (perhaps several possible) utterances as output, each of which conveys the
semantic content of the desired communicative goal. These two uses of tills architecture are conventional
and well-known. This thesis explores a novel third possibility. The architecture front figure 2.1 can be
viewed instead as a declarative relation that nmust hold between an utterance u. a semantic structure s. a

2
His terlmique requires a small amount of prior language-sspecific knowledge in the form of a lexicon of closed-class

words and a small regular (finite state) covering granunar for English.
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semantic
utterance structures

syntactic

. '• i -structures

syntactic word
categories meanings

language
model

Figure 2.1: A generic language processing architecture. The parser takes an input utterance, along

with a grammar and syntactic category information from the lexicon, and produces syntactic struc-

tures as output. The linker then forms the meaning of the utterance, i.e. its semantic structure, out

of the meanings of its constituent words. Word meanings are taken from the lexicon. The linking

process is mediated by the syntactic structure produced by the parser for the utterance.
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semantic semantic semantic
utterance structure utterance structure utterance structure

language
model

Figure 2.2: This figures illustrates hOw tile generic language proct-N.-ing architet turc from figurcý 2.1
can be used to support cross-situational learning. A copy of the architecture from figure 2.1 is made
for each utterance-meaning pair in the corpus. All of these copies are constrained to use the sanme
language model, i.e. the same grammar and lexicon. The learner must find a language model which
is consistent across the corpus.

grammar G. and a lexicon L. I will de-,',•e this declarative relation via the predicate [U((G L, u, s). Here,
U indicates whatever universal linguistic knowledge is presumed to be innate while G and L indicate
language-specific grammatical and lexical knowledge that must be acquired. This architecture can be
presented with an input utterance u. paired with a semantic structure s representing its meaning. The
semantic structure s corresponding to u could be derived by observing the non-linguistic context of the
utterance u. The predicate IT(G, L, u. s) then constrains the set of possible grammars G and lexica L
that. are consistent with the assumption that the input utterance u has tlh given moaning s. Thus U
can be used in this fashion as a language acquisition device.
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A single utterance paired with a single seniantic structure is usually not sufficient to uniquely deter-
mine the grammar and lexicon. The grauninar and lexicon cati. however, be uniquely determined through
cross-situational learning. The idea behind cross-situational leainng is depicted in figure 2.2. Here. thle
learner is presented with a sequence of utterances, each paired with a representation of its ineaning.
The architecture from figure 2.1 is replicated, with each utterance-iieaning pair being applied to its own
copy of the architecture. The different copies however, are constrained to share t lie same gramimiar and
lexicon. This amounts to the following learning strategy.

Find G and L such that:

('((;, L, ulSl )A
I'( , ,u.. s._,)A

I'G .u.. s,, )

The above learning strategy has a limitation however. It requires that the learner unambiguously know
the complete and correct meaning of each input utterance. If the learner was mistaken and associated
the wrong meaning with but a single utterance. this architecture either will produce the wrong graninar
and lexicon as output. or will not be able to find ainy grammar and lexicon consistent with the input
data. This limitation can be alleviated somewhat by relaxing the input requirement. We could instead
allow the learner to hypothesize a set of possible meanings for each utterance, most of which will be
incorrect. So long as the correct meaning is included with the set of meanings hypothesized for each
input, utterance, the learner could still determine a grammar and lexicon using the following extended
strategy.

Find G and L such that.:

[U(G, L, ul,sll) V ... V U(G. L, ui, sj,,,, )]A
[U(G, L, us,s2 ) V ... V U(G(. L. uqs,,,,,.)]A

[1(G. L, u., Is ) V ... V U(G.L, uL ,,,s.. )].

Here the learner simply knows that one of the meanings sil ..... Si,,,, is the correct meaning for utter-
ance ui, yet, need not know which is actually the correct, one. For example, a child hearing the ut terance
John threw Ih ball to Mary in a situation where John threw the ball to Mary while walking home from
school might conjecture that the utterance meant that John and Mary were playing, that Mary wanted
the ball, that John and Mary were walking, or a myriad of other possible mennings in addition to the
correct, one. This type of ambiguity in the mapping of input utterances to their correct meaning will be
referred to as referential uncertaint'. The process of determining GC and L will, in retrospect. eliminate
the referential uncertainty and allow the learner to determine the correct meanings to associate with
each input utterance.

The above strategy still makes some residual assumptions about the input to learner. It requires
that each of the input utterances be grammatical in the language to be learned. This is a standard
assumption in the field of language acquisition modeling. It also requires that the learner postulate
the correct meaning for each utterance as one of the hypothesized meanings for that utterance. The
learner would fail to converge to the correct, grammar and lexicon if either of these requirements are
not met. Furthermore, the strategy becomes intractable if the set of hypothesized meanings paired with
_.i-h input utterance grows very large. Thus, this strategy is feasible only if the learner possesses some
way of narrowing the set of hypothesized meanings using some criteria of salience. Potential solutions
to these issues are discussed in section 5.2.
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The key claiii made in this thesis is that an appropriately coilstraining thheory of universal lingu is-
tic knowledge, combined with a large corpus of utterances paired with Ipossible meanilgs. is sufficient
to uniquely determine a language-specific granunar and lexicon, using cross-sitnat ional learning. Istag
cross-situational learning. there is no probleil of regress. lidike other recent prol)osal., (cf. Pinker 19-4).
this strategy makes no assumption that sonie language-specific knowledge inust he acquired by unspec-
ified means before acquiring other language-specific knowledge.'

Let ne point out how the above strategy differs from the traditional folklore account of language
acquisition. The traditional account clainis that children learn a word's ilieanitig by observinig sit uations
depicting its use. Presumably. a child hears the word ball while being shown a ball an(d learns to pair
the word ball with the concept ball. For the traditional approach to work, the child inust be able
to unambiguously pair a word with its concept. This requires that there be at least one situation to
which the child is exposed where (a) no other words are uttered along with ball while in the presence
of balls, and (b) no other objects are present which are potential referents of the word ball. Otherwise,
a child hearing Pick up th( ball in the presence of a ball and a truck, could pair pick with ball. ball
with truck, or even worse, pick with truck. While undoubtedly. most children are exposed to .,oni
situations where a single word is uttered in the context of a single salient referent, it seenis unlikely t hat
the language acquisition device, robust as it. is. could be relying on this strategy given the fleetingly
rare possibilities for its use. The cross-situational strategy outlined in this thesis does not make such
restrictive assumptions about the nature of the input to the language acquisition device.

2.2 Outline

The remainder of part I of this thesis is divided into three chapters. (Chapter 3 motivates t(le need for
cross-situational learning by denmonstrating two small examples, fully worked through by hand, which
illustrate how cross-situational techniques work and how they can be more powerful than alternate,
approaches. Before presenting the details of cross-situational learning. chapter 3 first covers soine pre-
liminary background material. It discusses a particular semantic linking rule, nanlely collposition by
substitution, and how to apply that, rule in reverse. Inverse linking, which I call fracturing, plays a central
role in cross-situational semantic learning. Chapter 4 then present~s three implemented systenls which
apply cross-situational strategies to successively more sophisticated linguistic theories which make fewer
and fewer assumptions about the nature of the linguistic input and the child's prior language-specific
knowledge. Chapter 5 compares the cross-situational approach to several competing language acquisition
theories which do not use cross-situational techniques. It also summarizes the claims niade and results
reported in part, I of this thesis, discussing current limitations and areas for future work.

'Except perhaps the language-specific knowledge needed to acoustically segment utterances and recognize words. It
may be possible to extend the cross-situational learning techniques presented in this t hesis to simultaneously acquire such
knowledge as well.
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Chapter 3

Cross-Situational Learning

Section 5.1 will review a number of competing approaches to language bootstrapping. Many of the
approaches reviewed use trigger-based strategies. Trigger-based strategies attempt to learn linguistic
facts by observing isolated utterances. There is an alternative to trigger-based learning. Rather than
attempting to glean a linguistic fact from a single utterance or utterance-observation pair. it is possible to
try to find those linguistic facts that are consistent across multiple utterances and utterance-observat ion
pairs. I will call such techniques cross-situational learning. These techniques allows the learner to acquire
partial knowledge from ambiguous situations and combine such partial knowledge across situations to
infer a unique language model despite the ambiguity in the individual isolated situations.

There are a number of different techniques, some stronger and some weaker, that all fall within the
general framework of cross-situational learning. The similarities and differences between these tech-
niques, as well as the power of the general approach, are best illustrated by way of several small exam-
pies. This chapter presents two examples of cross-situational learning. They are designed for expository
purposes, to characterize in a simple way the techniques used by more complex implementations. Ac-
cordingly they utilize simple linguistic theories and make use of some prior language-specific knowledge
in the form of a fixed context-free grammar for the language being learned. In chapter 4. I present
three implemented systems that incorporate more substantive linguistic theories. Some of these systems
require less prior language-specific knowledge then the simple pedagogical examples discussed in this
chapter.

Before presenting the examples, I will first discuss fracturing, a key technique used in both the
examples and the implemented systems to be described. Fracturing is a way of running the linking rules
in reverse. Linking rules are normally conceived of as a means for combining the meanings of words into
the meanings of utterances comprising those words. During language acquisition, the learner is faced
with the opposite task. After pairing utterances with potential meanings derived from the non-linguistic
context of those utterances, the learner must pull apart an utterance meaning to map fragments of that
meaning to individual words in the utterance. The next section will present a technique for running a
particular linking rule in reverse, namely the linking rule proposed by Jackendoff (1983). Sections 3.2
and 3.3 will then present two fully worked-out examples of cross-situational learning in action.

3.1 Linking and Fracturing

Throughout much of part I of this thesis, I will represent meanings as terms, i.e. expressions com-
posed of primitive constant and function symbols. For expository purposes, I will use primitives
taken primarily from Jackendoff's (1983) conceptual structure notation, though I will extend this

33



34 CHAPTER 3. CROSS-SITiUATIOXAL LEA RNIN(;

set arbitrarily as needed.' Thus typical meaning expressions will include (GO(cup, FRONI(John))
and SEE(John. Mary). None of the techniques in part I of this thesis attributte ally interpretat ion
to the primitives. In every way. the meaning expression (O(cup. FROl(John)) is treated the sanw-

as f(a.g(b)).'
Variable-free meaning expressions such as those given above will denote thhe meanings of whole ul ter-

ances. The meanings of utterance fragments in general. and words in particular. will he represented as
meaning expression fragments that may contain variables as place holders for unfilled portion.,, of that
fragment. Thus. the word fromn might have the meaning FROM(x) while the word John mnight have the
meaning John.' Crucial to many of the techniques discussed iii part I of this thesis is a particular link-
ing ruk used to combine the meanings of words to fornm the meanings of phrases and whole utterances.
This linking rule is adopted by numerous authors including Jackendoff (1983. 1990). Pinker (1989).
and Dorr (1990a, 1990b). Informally. the linking rule forms the meaning of the prepositional phrase
from John by combining FROM(.c) with John to form FROM(John).

This linking rule can be stated more formally as follows. Each node in a parse i ,I -assigned an
expression to represent its meaning. The meaning of a terminal node is taken from th, lexical entry
for the word constituting that node. The meaning of a non-terminal node is derived from tlie meanings
of its children. Every non-terminal node u has exactly one distinguished child called its head. The
remaining children are called the complements of the head. The meaning of u is formed by substituting
the meanings of each of the complements for all occurrences of some variable in the iteaning of the
head. To avoid the possibility of variable capture, without adding the complexity of a variable renaming
process, we require that the meaning expression fragments associated with complements be variable-
free. Notice that this rule does not stipulate which complements substitute for which variables. Thus
if GO(x, TO(y)) is the meaning of the head of some phrase. and John is the meaning of its complement.
the linking rule can produce either GO(x.r TO(John)) or GO(JohnTO(y)) as the meaning of the phrase.
The only restriction on linking is that the head meaning must contain at least as many distinct variables
as there are complements.

Some authors propose variants of the above linking rule that further specifies which variables are
linked with which argument positions. For example, Pinker (1989) stipulates that the x in (0O(x'.Y)
is always linked to the direct internal argument. Irrespective of whether this is true. either for En-
glish specifically, or cross-linguistically in general, I refrain from adopting such restrictions here for
two reasons. First, the algorithms presented in part I of this thesis apply generally to any expressions
denoting meaning. They transcend a particular representation such as Jackendovian conceptual struc-
tures. Linking restrictions such as those adopted by Pinker apply only to expressions constructed out
of Jackendovian primitives. Since, for reasons to be discussed in part 11 of this thesis, the Jackendovian
representation is inadequate, it, does not make sense to base a learning theory on restrictions which are
particular to that representation. Second, the learning algorithms presented here are capable of learning
without, making such restrictions. In fact, such restrictions could be learned if they were indeed true.

The standard motivation for assuming a faculty to be innate is the poverty of stimulus argument. This

I In part II of this thesis. I will discuss the inadequacies of both Jackendovian conceptual structure representations as
well as substitution-based linking rules. Since much of the work in part I predates the work described in part II. it was
formulated using the Jackendovian representation and associate linking rule as a matter of expedience. since that is what
was prominent in the literature at the time. In more recent work, such as that described in section 4.3. 1 abandon the
Jackendovian representation in favor of simple thematic role assignments. a much weaker form of semantic representation.
This also entails abandoning substitution-based linking in favor of 0-marking. In the future I hope to incorporate the more
comprehensive semantic representations discussed in part II of this thesis into the techniques described in part 1.

2 This mitigates to some extent, the inadequacies of the Jackendovian representation. Nothing in part I of this thesis
relies on the semantic content of a particular set of primitives. The techniques described here apply equally well to any
representation provided that the representation adheres to a substitution-based linking rule. The inadequacies of such a
linking rule still limit the applicability of these techniques. however.

3 Throughout this chapter and the next I will use the somewhat pretentious phrase 'the meaning of x' to mean 'the
meaning expression associated with x'.
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John slid the cup from Mary to Bill.
CAUSE(John. GO(cup. [pathI FROM(Mary), TO(Mary)]))

John slid the cup fromn Mary to Bill
John CAUSE(., GO(cup, [Path FROM(Mary). TO(Mary)]))

slid the cup from Mary to Bill
CAUSE(x, GO(y, [Path u, t])) cup FROM(Mary) TO(Bill)

the cup from Mary to Bill
1 cup FROM(x) Mary TO(x) Bill

Figure 3.1: A derivation of the meaning of the utterance John slid the cup from Mary to Bill from
the meanings of its constituent words using the linking rule proposed by Jackendoff.

argument is falsified most strongly with a demonstration that something is learnable. It is important
not. to get carried away with our rationalist tendencies making unwarranted innateness assumptions in
light of the rare observation of something that is indeed learnable by empiricist methods.

Some words, such as determiners and auxiliaries, appear not, to have a meaning that can be easily
characterized as meaning expressions to be combined by the above linking rule. To provide an escape
hatch for semantic notions that fall outside the system described above, we provide the distinguished
meaning symbol 1. Typically, words such as the will bear - as their meaning. The linking rule is
extended so that any complements that have -L as their meaning are not substituted into the meaning of
the head. This allows forming cup as the meaning of the cup when the has I and cup has cup as their
respective meanings. Using this linking rule, the meaning of phrases. and ultimately entire utterances
can be derived from the meanings of their constituent, words, given a parse tree annotated as to which
children are heads and which are complements. A sample derivation is shown in figure 3.1. Note that
the linking rule is ambiguous and can produce multiple meanings, even in the absence of lexical and
structural ambiguity, since it does not specify which variables are linked to which complements. Also
note that the aforementioned linking rule addresses only issues of argument structure. No attempt is
made to support other aspects of compositional semantics such as quantification.

Substitution-based linking rules are not new. They are widely discussed in the literature (cf. Jack-
endoff 1983, 1990, Pinker 1989, and Dorr 1990a, 1990b). The techniques in this thesis explore a novel
application of such linking rules: the ability to use them in reverse. Traditionally, compositional seman-
tics is viewed as a process for deriving utterance meanings from word meanings. This thesis will explore
the opposite possibility: deriving the meanings of individual words from the meanings of utterances
containing those words. I will refer to this inverse linking process as fracturing.

Fracturing is best described by way of an example. Assume some node in some parse tree has the
meaning GO(cup, TO(John)). Furthermore, assume that the node has two children. In this case there
are four possibilities for assigning meanings to the children.
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Head ('omplement
GO(x. TO(John)) cup

GO(cup. X) TO(John)
GO(cup.TO(x)) John

GO(cup, 'ro(John)) ,

Note specifically the last possibility of assigning - as the meaning of the complement. This option will
always be present. when fracturing any node. The above fracturing process can be applied recursively.
starting at the root node c-f a tree, proceeding toward its leaves, to derive possible word meanings from
the meaning of a whole utterance. More formally, fracturing a node u is accomplished by tile following
algorithm.

ALGORITHM To fracture the meaning expression associated with a node u into meaning expression
fragments associated with the head of u and its complements:

Let e be the meaning of u. For each complement, either assign I as tile meaning of that
complement or perform the following two steps.

1. Select some subexpression s ofE and assign it as the meaning of that complement. The
subexpression s must not contain any variables introduced in step 2.

2. Replace one or more occurrences of s in c with a new variable.

After all complements have been assigned meanings, assign ( as the meaning of the head. 0

As stated above, the fracturing process is mediated by a parse tree annotated with head-child mark-
ings. Given a meaning expression c, one can enumerate all meaning expression fragments which can possi-
bly link together to form c, irrespective of any parse tree for deriving (. Such a meaning fragment is called
a submeaning of e. For example, the following are all of the submeanings of GO(cup, FROM(John)).

GO(cup, FROM(John))
cup

GO(x, FROM(John))
GO(x, FROM(y))

GO(x, y)
GO(cup, FROM(x))

GO(cup, x.)
FROM(John)

FROM(x)
John

I

If an utterance has e as its meaning, then every word in that utterance mubt have a submeaning of
as its meaning. The set, of submeanings for a meaning expression c can be derived by the following
algorithm.

ALGORITHM To enumerate all submeanings of a meaning expression C:

Let s be some subexpression of c. Repeat the following two steps an arbitrary number of
times.

1. Select some subexpression t of s not containing any variables introduced in step 2.

2. Replace one or more occurrences of t in s with a new variable.

Upon completion, s is a possible submeaning of 4. Furthermore, I is a possible subineaning
of every expression. 0

Both the fracturing algorithm, as well as the algorithm for enumerating all submeanings of a given
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meaning expression, will play a p,oni:ntwit role throughout the remainder of part I of this theesis.

3.2 Learning Syntactic Categories

Consider the following problem. Suppose that a learner was given a fixed context-free graunmar along
with a corpus of utterances generated by that grammar.4 Given such information. the learner must derive
a lexicon mapping the words in the corpus to their syntactic category. No non-linguistic information is
given to the learner.

This problem is typified by the following example. Suppose that the learner is given the following
context-free grammar.

S - NP VP

NP - {D} N
VP - V {NP {NP}}

I will refer to this grammar as Gj. Now suppose that the learner hears the utterance John saw Mary.
Since G1 generates only two three-word terminal strings, namely N V N and D N V. the learner can
conclude that John must be either a noun or a determiner, saw a verb or a noun. and Mary either a noun
or a verb, given their respective positions in the input string. If the learner later hears the utterance
Mary ate breakfast, she can perform a similar analysis and conclude that Mary must he a noun since
only nouns can appear as both the first and third words of a three word utterance.

This analysis is based on one crucial assumption: that each word bear only one syntactic category. I
will call this assumption the monosemyv constraint. Clearly language contains polyseinous words. I will
discuss potential ways of relaxing the monosemy constraint in section .5.2.

I will refer to the above technique as weak cross-situational learning. In the above example. weak
cross-situational learning constrains only the syntactic category of Mary, and not any of the remaining
words, since only Mary appears in multiple utterances. The learner can nonetheless performi more
aggressive inference given the above information. Once the learner infers that Mary is a noun. site can
rule out D N V as a possible analysis for Mary at( brcakfast, leaving only the N V N analysis. Thus the
learner can also infer that att is a verb and breakfast is a noun. Furthermore. if the learner was able to
reanalyze previous utterances, she could perform a similar analysis on Johb saw Mary and determine
that John is a noun and saw is a verb. The given grammar and corpus permit only one consistent
analysis and thus entail a unique lexicon. I will call the process of finding such a consistent analysis,
strong cross-situational learning. In the above example, weak cross-situational learning could never
converge to a unique lexicon since a noun can appear anywhere a determiner can appear. Thus strong
cross-situational learning is strictly more powerful than weak cross-situational learning.

As formulated above, cross-situational learning requires the learner to remember prior utterances.
This may not be cognitively plausible. An alternative formulation, however, alleviates this drawback. A
lexical entry can be viewed as a proposition, for example

category(John) = N.

A lexicon is normally thought of as a set of lexical entries. This can be viewed as a conjunction of
propositions, for example

category(John) = N A category(saw) = V \ category(Mary) = N.
4 Clearly children do not have prior access to such language-specific information. This is example is simplified for

expository purposes. The Davra and Kenuniasystems discussed in chapter 4 do not assume prior access to a language-
specific granunar.
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The concept of a lexicoin formula call he et iXtlldtd to include di. s.junCt ions of proJlosit ions. Such disjunlict i

lexicon forinulao call represent iiternitdiate st ates of partial informtiat ion about t lhe lexicon beiiig learned.

"Thus after hearing tile utterance John sac .Mlary. the learner can fitl the following disJunllictiv,' lexicoll

for iiula.
(category( John) N A calegory( sat") V A category( .lary) N )V

(category( John) 1) A category(.sau) N A category(Ma ry) V)

The learner can discard the utterance and retain only the derived lexicon formula. ('poll hearing each

new utterance, the learner call form a new lexicon formula for that utteraiice aiid coiljoiii it with thle

previous lexicon formula. In this case. the entire lexicon formula would be a conjunict iol of disju'mIlotils

of conjunctions of lexical entry propositions. Further formulae repres't ilng thlie ionoisely coiistraini

call be conjoined with the lexicon formula. Such nionosein.v formulae take tile following formit

caiegory(sau') = N A category(san) = V

which states that no word call bear two different categories. Strong cross-sit uatioiial learning cal lien
be seen as finding truth assignments to the lexical entry propositions which satisfv the ressulting lexicon

formula. Though determining propositional satisfiability is NP-contplete. well-known heuristics, such as

boolean constraint propagation. call usually solve such problens efficiently in practice (cf. McAllester utn-

publishe,l. 1978, 1980. 1982. and Zabih and McAllester 1988).

The difference between weak and strong cross-situational learning can be seen as generating diff'reult

forms of lexicon formulae. Given the utterance John sai" Mary. weak cross-sit uat ional learning call be
viewed as constructing the following lexicon formula

(category(.John) = N V category(.John) = D)A

(category(saw) = V V category(.saw) = N)A
(category(Mary) = N V category(Mary) = V)

instead of the formula described previously. It is easy to see that the lexicon formula created for weak
cross-situational learning is linear in the size of the input utterance. The naive approach for gelnerating

the lexicon formula corresponding to strong cross-situational learning would generate a dis~inct for each

possible parse. Since there could be an exponential number of parses. this would appear intractable.

It is possible however, to use a variant of the ('KY algorithm (Kasami. 19655. Younger 1967) to share
common subformulae and generate, in polynomial time, a lexicon formula whose size is polynolmial iii

the length of t he input utterance. This is done as follows. Lexical entry proposit ions of the form /,, ,
are created for each word it and syntactic category c. Next. for each utterance. propositions of 1le
form Pij', are created for each syntactic category c and each 0 < i < j < n where n is the length of the

utterance. Intuitively, the proposition Pij, is true if the subphrase fronm position i through position j ill

the utterance can be parsed as category c. For eacr' binary branching rule A - B C in the grammar. 5

and for each 0 < i < j < n. propositional formulae of the formut

j
PijA - P)ikB A PIkj("

k=i

are conjoined to form a large formula. To this one conjoins all formulae of the form

iiC -•/C

wher. (C is a category, 0 < i < n, and w is tho word at position i. as well as asserting the single

proposition ponS where S is the root category of the grammar. Formulae such as these are created

"Any context-free grammar can be converted into a weakly equivalent grammar containing only binary branching riles.

This convwrsion process, known as conversion to ('homsky Normal Form. does not afct,•i ilc ategory learning process.
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for each utterance III tili, corpuis aiiti ConjoinedI togetlher. Fiinahlly 1110110 ii' lorniiiilatt over II litI'll
p~roposit ions arte added to enflorce thle niionost'iii conist rainit. J11ilt,. who~le formiulai (;iii hct coiivtrtt'tf
to conijunlct ive nornital foriii yielding a fornitila WhoSe' SiZt is p~olViioItIIal ilitli Ill"t IVI~ oh thilt' corpus.'

Satisfyiing assiukw to this formunla conist itutie word-to-category iiiapjttngs t hat art, (consistetnt withI
bot h tilie corpuis aind thlet grammilar.

3.3 Learning Syntactic Categories and Word Meanings To-
gether

'Ilii' prev ious example Ill ust rated th liest- of' weak anid st roiig c ross-slit natioiial t echniiques for le'arniing
synltact ic categories from linguistic Inforiiat ion alonte withlout aniy refe'renice to semianitics. It is possibI le
to exteind these techniques to learn bothI synitactic and sem ant ic information whien given bothI linigu ist ic
and non-linguistic input. As the ntext example will Illustrate. noni-hitiguist ic Iniput canl ht' 1 iiot oliN v ill thlit
acqluisit ion of' word meaingsii~ but1 c-aii also assist lin leariiing synt~actic categories as wtell. Furthlerimorte.
synitactic knowledge call aid the( acqulisit~ioni of' word iiieaniiigs. Thie example~t will demonist ratet how st roiig
cross-sittitational learning, applied to a combined syntactic andl semnant ic theory. is more, powerful t haii
either weak or strong cross-sit uat jotal learning applied to either sy Ittax or seiiantitics alote.

Consider a learner who possess t~he following context-free grammar.

S - N 1)VP

NP - ID) N

VP - V {NhP {NP}} PP-

P1P - P NP

I wvill refer to t his granmmar as (;,. Now suippose that the learter hears thle following five ut Iteranc(es. 58

SI: John flcd froni th( dog. FLEE(Jolin, FROOM(dog))
S.': John u'alkcd froi Li corncr. WALK(Johni, FROMI(corner))
S3: Mary walked to t& corncr. WALK (Mary, TO(corner))
84: Mary ran to a cal. RIUN(MaryTO(cat))
8 r: John -slid from) Bill to Mlart~. SLIDE(Johin. [pai, FRONI(Bill),,To(Mary)])

Each utterance is paired with its correct, meaning as derived hy the learner fromi observation of
it~s non-linguistic context. Furt~hermiore. I will assume that the learnier knows that each of the Input
utterances is generat~et by G., and that. the meanings associated with each utiteratice are dlerived froii tilit,
meanings of the words ini that. ut~teraiice via the syntax-miediat~ed linking rule dIescribedl inl sectioni :.1.
In this example however, I assume that, the learner does not know which sytitactic categories constitute
the heads of the rules iii G,. Thus the learner must cotnsider all possibilities. The task faced by thle

'The size of the formulda constructed for each utterance is cubic in thle tengtth of thai utterance . Asstuming a botund

on utterance length. the size of the formnula constructed is thus tineal- in the number tof utterances and qutadrat it in thle
numbter of distinct words appearing in t~he corptus, due to the. nonosenly formultae.

7To reiterate, words in italirs denctte linguistic tokens while wotrds in boldface or UPPER CASE denotte semntaicit
represenitat ions of word meanings. There is no prior correspondence between a linguistic token such as Joh)) and a
senmantitc token such as John, even though they share the samne spelling. They% are treated as uninterpreted toketns. Tile
task faced by the learner is to acquire the appropriate correspondences a- word- to-mieani ng Inaptpings.

' For the purposes of this thesis, thle notation [Path J% * canl be viewed as, a two argumuent futnctiotn which comblines twit

paths itt yietd anl aggregate p~athl with the comibitiec prtoperties of the path arguments x and y.
' To simiptify this example I wilt assumne that the learner unamhiguoust 'y knows thie meaning ttf eacth ut terancet in thle

corpus. Techniques described sectittn 2.1 c-an tie used itt relax this assumption and alltow referential tincertainlY. Suich
techniques are incotrporatedt in alt ttf thle implementations dttstritbed in chattaer 4.
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1 2 3 4 5
(a) D N V D N
(b) D N V N N
(c) D N V P N
(d) N V D N N
(e) N V N D N
(f) N V N P N
(g) N V P D N

{N,D} {NV} {N,V,P,D} {N,P.I)} {N}

1 2 3 4 5 6
(a) D N V N D N
(b) D N V D N N
(c) D N V N P N
(d) D N V P D N
(e) N V D N D N
(f) N V D N P N
(g) N V N P D N
(h) N V N N P N
(i) N V P N P N

{ND} {NV} {NV,P.D} {N,P,D} {N,P,D} {N}

Figure 3.2: All possible terminal category strings for five and six word utterances generated by
grammar G2 .

learner is to discern a lexicon that maps words both to their syntactic categories, as well their meanings.
so that the derived lexicon consistently allows the utterances to be generated by G., and their associated
meanings to be derived by the linking rule.

Consider first what the learner can glean by applying weak cross-situational techniques to the lin-
guistic information alone. Each of the input utterances is five words long, except. for the last utterance
which is six words long. There are seven possible terminal strings of length five, and nine of length six.
These are illustrated in figure 3.2.

The syntactic category assignments produced by weak cross-situational learning are illustrated in
figure 3.3. Note that weak cross-situational learning can uniquely determine only the syntactic categories
of Mary, corner, cat, and dog. These are uniquely determined because they occur in utterance final
positions and G2 allows only nouns to appear as the last word of utterances of length greater than three.
Furthermore, notice that in the above corpus, most of the words appear cross-situationally in the same
position of an utterance of the same length. Thus the set intersection techniques of weak cross-situational
learning offer little help here in reducing the possible category mappings. In fact, only the words Mary
and to engender the intersection of two distinct, category sets. Even here though, one set is a subset of
the other. Thus for this example, weak cross-situational learning provides no information.

Strong cross-situational learning can improve upon this somewhat, but. not significantly. The fact
that Mary is a noun rules out the first three analyses for both S3 and s 4 since they require the first
word to be a determiner. This implies that. both walked and ran must be verbs since the remaining four
analyses all have verbs in second position. Discovering that, walked is a verb can allow the learner to rule
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John: [N.D] IN.D}D n{N.D N{ND)
fled: [N.V] {N, V}
from: [NVP.D] {N, V, P. D} n {N. V. P, D} n {N, V. P. D}
the: [NP,D] {N, P, D} n {N. P, D}
dog: [NJ {N}
walked: [NAV] {N, V) {N. V}
a: [N,PD] {N, P, D) n {N, P. D}
corner. [N] {N}
Mary: [N] {N. D) n {N, D} {N}
to: [N,P,D] {N,V.P,D}n{N,V,P,D}n{N,P,D}
ran: [N,V] {N. V}
cat: [N] {N}
slid: [N,V] {N, V}
Bill: [N,P,D] {N, P, D}

Figure 3.3: An illustration of the syntactic category assignments that weak cross-situational learning
can infer for the sample corpus using linguistic information alone.

out the first three analyses for s., since they require a noun in second position. This allows the learner
to infer that John must be a noun and from cannot be a verb. Since John is a noun, sl cannot have the
first three analyses and s 5 cannot have the first four. Thus fled and slid must be verbs and Bill cannot
be a determiner.

At this point, the learner knows the syntactic categories of all of the words in the corpus except
for from, to, the, a, and Bill. The words from. to, the, and a might still be either nouns, preposi-
tions, or determiners, and Bill might be either a noun or a preposition. There are however, additional
cross-situational constraints between the possible category assignments of these words. Not all possible
combinations are consistent with G2 . One can construct a constraint satisfaction problem (CSP) whose
solutions correspond to the allowable combinations. The variables of this CSP are the words from, to.
the, and a. Each of these variables range over the categories N, DR and P. Define P(., y) to be the con-
straint which is true if one of the last four analyses for five word utterances allows category x to appear
in third position at the same time that category y can appear in fourth position. Thus P(., y) is true
only for the pairs (D, N), (N, D), (N, P), and (P, D). Furthermore, define Q(x,.y) to be the constraint
which is true if one of the last five analyses for six word utterances allows category x to appear in third
position at the same time that category y can appear in fifth position. Thus Q(x, y) is true only for
the pairs (D, D), (D,P), (N, D), (NP), and (P. P). The allowed category mappings must satisfy the
following constraint.

P(from, a) A P(from, the) A P(to, a) A P(to, the) A Q(from, to)

This constraint admits only three solutions. The following table outlines these possible simultaneous
category mappings along with the analyses they entail for each of the five utterances in the corpus.

from to the a sl s2 s3 S4 S5
N P D D (e) (e) (g) (g) (h)
P P D D (g) (g) (g) (g) (i)
D D N N (d) (d) (d) (d) (e)

Thus the and a cannot be prepositions and to cannot be a noun. Furthermore, this analysis has shown
that Bill must be a noun. In this example, strong cross-situational learning cannot, however, narrow
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from can be a N
John fltd fron thI dog.

N V N D N
John walked from a corner.

N V N D N
Mary walked to the cornu".

N V P D N
Mary ran to a cal.

N V P D N
John slid from Bill to Mary.

N V N N P N

from can be a D
to can be a D
the can be a N
a can be a N

John fled from the dog.
N V D N N

John walked from a corner.
N V D N N

Mary walked to the corner.
N V D N N

Mary ran to a cat.
N V D N N

John slid from Bill to Mary.
N V D N D N

Figure 3.4: Analyses of the corpus which are consistent with the language model after strong cross-
situational techniques have been applied to syntax, but which are nonetheless incorrect.

down the possible syntactic categories for from, to, the, and a any further. Figure 3.4 shows consistent
analyses where the and a can be a noun, to can be a determiner, and from can be either a noun or a
determiner.

Cross-situational learning can be applied to semantics much in the same way as syntax. Using the
fracturing technique described in section 3.1, it is possible to enumerate all of the submeanings of the
meaning expressions associated with each utterance in the corpus. These are illustrated in figure 3.5

Applying weak cross-situational learning techniques, the learner can constrain the possible meanings
of Mary to the intersection of the sets of submeanings for each of the utterances s3 , S4, and s5 , since
Mary appears in each of these three utterances. Thus Mary must take on one of the meanings I.
Mary, or TO(x) to be consistent with these utterances. A similar analysis can narrow the possible
meanings of the words a, the, John, walked, from, to, and corner since each of these words appears in
more than one utterance. Figure 3.6 gives the restricted sets of possible meanings derived for these seven
words. Weak cross-situational learning cannot, constrain the meaning of the remaining words since they
each appear only in a single utterance in the corpus. Note that for this example, weak cross-situational
learning applied to semantics has succeeded in uniquely determining the meaning of only two words.
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a = 56 4., f •4

the = ± sl n sa
John E {±, John, FROM(x)} s, n s,, n s.
Mary E {. Mary, TO(x)} , 3 n S4 nts5
walked E {1. WALK(x. y). corner} s., f 8 3

from E {1 .John, FROM(x)} sl n •-.fls5
to E {±, Mary, TO()} Is 3 nfl4 fl s5
corner E {, WALK(x. y), corner} s.. n •3

Figure 3.6: Weak cross-situational techniques can form these narrowed sets of possible meanings for
the words which appear in more than one utterance in the sample corpus.

namely that a and the both mean I_.
Neither strong cross-situational learning applied to syntax alone, nor weak cross-situational learning

applied to semantics alone, are sufficient, to uniquely determine the syntactic categories or meanings
of all of the words in this example. It is possible however, to apply strong cross-situational learning
techniques to this problem, incorporating both syntactic and semantic constraints. This will force a
unique determination of the lexicon. To see this, first remember that, strong cross-situational syntax
learning has determined that S3 must have either analysis (d) or analysis (g). If 83 took on analysis (d)
then it would have the following structure.

WALK(MaryTO(corner))

Mary WALK(x, TO(corner))
Mary

walked TO(x) corner

to the
TO(x) 1

We know that the root node must. mnean WALK(Mary, TO(corner)) since that is given by observation.
Furthermore, we know that the must mean 1. Since the root meaning contains the symbol TO, which
cannot be contributed by the possible meanings for walk and corner, either the word Mary or the word
to must take on TO(x) as its meaning. Analysis (d) will not allow Mary to mean TO(x) since the
linking rule could not then produce the desired root meaning. Thus to must mean TO(x). Furthermore.
Mary must mean Mary since the root meaning contains the symbol Mary which no other word can
contribute. At this point, since the meanings of both to and the have been determined, the linking rule
then fixes the meaning of the phrase to the to be TO(x). The linking rule can also operate in reverse,
using the known meanings of both Mary and the root utterance to determine that the phrase walked to
the corner must mean WALK(x.TO(corner)). At this point however, the learner can determine that
the linking rule has no way of forming the meaning of walked to the corner out of the known meaning for
to the and the potential meanings for walked and corner. Thus the learner can infer that utterance 83

cannot have analysis (d), and must therefore have analysis (g).

Analysis (g) has the following structure.
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WALK(Mary, TO(coruer))

Mary "'ALK(x, TO(corner))
Mary

walke d TO(corner)
"WALK(x,y)

to corner
TO(W)

tht corner
- corner

The learner can annotate this structure with the known meaning for the as well as the root meaning. As
before, either the word Mary or the word to must. mean TO(x) since no other word can contribute the
symbol TO to the root meaning. Furthermore, Mary cannot mean TO(x) since the linking rule would not
then be able to derive the root meaning. Thus to must mean TO(x). Likewise, Mary must mean Mary
since at this point no other word can contribute the necessary symbol Mary to the root meaning.
Inverse linking can then determine that walked to the corner must mean WALK(x, TO(corner)). Under
analysis (g), the only way to derive this meaning, given the possible meanings for its constituent words.
is for walked to mean WALK((x, y) and corner to mean corner.

This type of reasoning has allowed the learner to uniquely determine not only the meanings of the
words Mary, walked, to, the, and corner, but also that to must. be a preposition and the must be a
determiner. This rules out the third possible solution to the CSP problem presented earlier implying
that a must be determiner and from cannot be a determiner. Furthermore, S4 must have analysis (g).
sr cannot have analysis (e), and neither zq nor s2 can have analysis (d).

Since S4 must have analysis (g), it must have the following structure.

RUN(Mary. TO(cat))

Mary RUN(x,TO(cat))
Mary

ran TO(cat)
RUN(x, y)

to cat
TO( a)

a cat
, .L cat

Knowing the meaning of the root node, as well as the meanings of the words Mary, to. and a, allows the
learner to uniquely deternmine that ran must mean RUN(x.y) and cat must mean cat since these are
the only meanings with which the linking rule can produce the desired root meaning.

At this point the learner can analyze s, in a fashion similar to s3 . By an argument analogous to the
one used for S3. the learner can rule out analysis (d), determining that, only analysis (g) is consistent.
In doing so, the learner will assign the meanings John to John and FROM(x) to from. Thus from must
be a preposition, s, must have analysis (g), and s5 must have analysis (i). At this point., FLEE(x, y) is
the only possible meaning for fled which will allow s, to take on the desired root meaning consistent
with analysis (g). Finally, by a similar argument., slid must mean SLIDE(x, [Path x, y]) and Bill must
mean Bill since only these meanings can let the linking rule produce the desired meaning of s 5 under
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analysis (i). With this, the learner has completely determined a unique lexicon that is consisteli with
the corpus.

While this example is somewhat contrived, it nonetheless illustrates a situatioil in which the coni-
bination of syntactic and semantic reasoning is strictly stronger than either applitd in isolation. It is
particularly important to highlight the fact that syntactic reasoning can help constrain semantic choices

and vice versa. The above example demonstrated a continual imerplay between syntax and semantics.
The central claim of part I this thesis is that such interplay is crucial to language learning. It is t(lie key
that can unlock the quagmire of the various bootstrapping hypotheses reviewed in sectioni 5.1. showing
that it is :not necessary to assume prior language-specific knowledge before the onset of tlie primary phase
of language acquisition. The problem of infinite regress is thus avoided. \Vhile actual child language
acquisition c'ould not, proceed according to the overly simplistic linguistic theory utilized in this example.
I conjecture that the process actually performed by children does nonetheless incorporate an interplay
between syntax and semantics using cross-situational techniques interwoveni with whatever turns out to
be the correct linguistic theory. The claim that children learn by an interplay of syntactic and semantic
knowledge is fairly uncontroversial. The claim that they utilize a cross-situational strategy to do so
is, however, a controversial conjecture. The next chapter attempts to explore the consequences of this
conjecture for more substantial linguistic theories.



Chapter 4

Three Implementations

To test the ideas discussed in the previous chapter. I have constructed three systenms that incorporate
these ideas into working implementations. Each of these systems applies cross-situational learning tech-
niques to a combination of both linguistic and non-linguistic input. In accord with current hypotheses
about. child language acquisition, these systems use only positive examples to drive their acquisition of a
language model. These systems differ from one another in the syntactic and semantic theory which they
use. MAIMRA, 1 the first system constructed, incorporates a fixed context-free grammar as its syntactic
theory, and represents word and utterance meanings using Jackendovian conceptual structures. MAIMRA
learns both the syntactic categories and meanings of words, given a corpus of utterances paired with
sets of possible meanings. DAVRA, 2 the second system constructed, extends the results obtained with
MAIMRA by replacing the fixed context-free grammar with a parameterized version of X theory. This
grammar contains two binary-valued parameters which determine whether the language is head-initial
or head-final, and SPEC-initial or SPEC-final. Given a corpus much like that given to MAIMRA. DAVRA

learns not only a lexicon similar to that, learned by MIAIMRA, but the syntactic parameter settings as
well. DAVRA has been successfully applied to very small corpora in both English and Japanese. learning
that English is head-initial while Japanese is head-final. KENUNIA,3 the third system constructed, incor-
porates the most substantial linguistic theory of the three systems. This theory closely follows current
linguistic theory and is based on the DP hypothesis, base generation of VP-internal subjects, and V-to-I
movement. KENUNIA incorporates a version of X theory with sixteen binary-valued parameters that
supports both adjunction as well as head-complement structures. More importantly, KENUNIA supports
movement and empty categories. Two types of empty categories are supported: traces of movement., and
non-overt words and morphemes. KENUNIA incorporates several other linguistic subsystems in addition
to X theory. These include 0-theory, the empty category principle (ECP), and the case filter. The current
version of KENUNIA has learned both the parameter settings of this theory, as well as the syntactic cate-
gories of words, given an initial lexicon pairing words to their 9-grids. Future work will extend KENUNIA

to learn these 9-grids from the corpus, along with the syntactic categories and parameters. instead of
giving them to KENUNIA as prior input. In the longer term, I also plan to integrate the language learning
strategies from MAIMRA, DAVRA, and KENUNIA with the visual perception mechanisms incorporated in
ABIGAIL 4 and discussed in part II of this thesis. The remainder of this chapter will discuss MAIMRA,

DAVRA, and KENUNIA in greater detail.

'Maimra or N71"'3", is an Aramaic word which means word.2 Davra, or -r17. is an Aramaic word which does not mean word.
3 Kenunia or NIJUP, is an Aramaic word which means conspiracy. In Kenunia the linguistic principles conspire to

enable the learner to acquire language.
4 Abigail is not an Aramaic word.

47
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S - NPVP-]

S - {COMP)}[7

NP - f {DET} I]{SiNPIVPIPP}"

VP - {AUX}[W]{SINPIVPIPP}"

PP - f-If9{SNPIVPIPP}-

AUX - {DOIBEI{MODALITOI{{MODALITO}} HAVE) {BE)}

Figure 4.1: The context-free grammar used by Maim ra The categories enclosed in boxes indicate
the heads of each phrase type. The distinction between head and complement children is used by
the linking rule to form the meaning of a phrase out of the meaning of its constituents.

4.1 Maimra

MAIMRA (Siskind 1990) was constructed as an initial test of the feasibility of applying cross-situational
learning techniques to a combination of linguistic and non-linguistic input in an attempt to simul-
taneously learn both syntactic and semantic information about language. MAIMRA is given a fixed
context-free grammar as input; grammar acquisition is not part of the task faced by MAIMRA. Though
the grammar is not hardwired into MAIMRA, and could be changed to attempt acquisition experiments
with different input grammars, all of the experiments discussed in this chapter utilize the grammar given
in figure 4.1. This grammar was derived from a variant of X theory by fixing the head-initial and SPEC-
initial parameters, and adding rules for S, S, and AUX. Note that this grammar severely overgenerates
due to the lack of subcategorization restrictions. The grammar allows nouns, verbs, and prepositions to
take an arbitrary number of complements of any type. MAIMRA is nonetheless able to learn despite the
ensuing ambiguity.

MAIMRA incorporates a semantic theory based on Jackendovian conceptual structures. Words.
phrases, and complete utterances are assigned fragments of conceptual structure as their meaning. The
meaning of a phrase is derived from the meanings of its constituents by the linking rule discussed in
sectioi. 3.1. To reiterate briefly, the linking rule operates as follows. The linking rule is mediated by a
parse tree. Lexical entries provide the meanings of terminal nodes. Each non-terminal node has a distin-
guished child called its head. The remaining children are called the complements of the head. Unlike the
puzzle given in section 3.3, the grammar given to MAIMRA indicates the head child for every phrase type.
Figure 4.1 depicts this information by enclosing the head of each phrase with a box. The meaning of a
non-terminal is derived from the meaning of its head by substituting the meaning of the complements
for the variables in the meaning of the head. Complements whose meaning is the distinguished symbol I
are ignored and not linked to a variable in the head. MAIMRA restricts all complement meanings to be
variable-free so that no variable renaming is required.

In addition to the grammar, MAIMRA is given a corpus of linguistic and non-linguistic input. Fig-
ure 4.2 depicts one such corpus given to ,IAIMRA. This corpus consists of a sequence of nine multi-word
utterances, ranging in length from two to seven words. Each utterance is paired with a set of between
three and six possible meanings.5 MAIMRA is not told which of the meanings is the correct one for each

5 As described in Siskind (1990). Maimrais not given this set of meanings directly but instead derives this set from
more primitive information using perceptual rules. These rules state, for instance, that seeing an object at one location
followed by seeing it later at, a different location implies that the object moved from the first location to the second. The
corpus actually given to Maimrapairs utterances with sequences of states rather than potential utterance meanings. Thus
Maimrawould derive GO(x, [Path FROM(y), TO(z)]) as a potential meaning for an utterance if the state sequence paired
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utterance, only that tihe set contains tle correct neaning as one of its intintlers. hius tle corpus giveli
to MAIMRA call exhibit referential uncertainty in mapping the linguistic to tile non-lingueslic input.

NIAIMRA processes the corpus. utterance by utterance. producing a disjunctive lexicon formula for
each utterance mneaning-set pair. No information other than this lexicon formula is retained after pro-
cessing an utterance. This processing occurs in two phases. corresponding to thle parser and linker frotm
the architecture given in figure 2.1. In the first phase. MAIMRA constructs a disjunctive pars, tree

representing the set. of all possible ways of parsing the input utterance according to tile given context-
free grammar. Appendix A illustrates sample disjunctive parse trees which are produced by MAI.MRA
when processing the corpus front figure 4.2. Structural anmbiguity call result both front the fact that

.the grammar is ambiguous, as well as the fact that NIAINIRA does not yet have unique nmappings fronm
words to their syntactic categories. Initially, MAINIRA assumes that each word call assume any termninal
category. This introduces substantial lexical ambiguity and results in corresponding structural antbigu-
ity. As MAtMRA further constrains the lexicon, she can rule out some word-to-category mappings and
thus reduce the lexical ambiguity when processing subsequent utterances. Thus parse trees tend to have
less ambiguity as MAINIRA processes more utterances. This is evident in the parse trees depicted on
pages 210 and 213 which are also illustrated below. When NIAIMRA first parses tile utterance Bill ran to
Mary, the syntactic category of ran is not yet fully determined. Thus NIAIMRA produces the following
disjunctive parse tree for this utterance.

(OR (S (OR (NP (N BILL) (NP (N RAN)))
(NP (N BILL) (VP (V RAN)))
(NP (N BILL) (PP (P RAN))))

(VP (V TO) (NP (N MARY))))
(S (NP (N BILL))

(OR (VP (V RAN) (PP (P TO)) (NP (N MARY)))
(VP (V RAN) (VP (V TO)) (NP (N MARY)))
(VP (V RAN) (NP (N TO)) (NP (N MARY)))
(VP (OR (AUX (DO RAN))

(AUX (BE RAN))
(AUX (MODAL RAN))
(AUX (TO RAN))

(AUX (HAVE RAN)))
(V TO)

(NP (N MARY)))
(VP (V RAN)

(OR (NP (DET TO) (N MARY))

(NP (N TO) (NP (N MARY)))))
(VP (V RAN) (VP (V TO) (NP (N MARY))))
(VP (V RAN) (PP (P TO) (NP (N MARY)))))))

As a result of processing that utterance, in conjunction with the constraint provided by prior utterances.
MAIMRA can determine that. ran must be a verb. Thus when parsing the subsequent utterance Bill ran
from Mary, which nominally has the same structure, MAIMRA can nonetheless produce the following
smaller disjunctive parse tree by taking into account, partial information acquired so far.

with that utterance contained a state in which BE(.r, AT(y)) was true. followed later by a state where BE(x. AT(:)) was
true. This primitive theory of event perception is grossly inadequate and largely irrelevant to the remainder of the learning
strategy. For the purposes of this chapter, Mainirois perceptual rules can be ignored and the input to Maimraviewed
as comprising a set of potential meanings associated with each utterance. The ultimate goal is to base future language
acquisition models on the theory of event perception put forth in part II of this thesis, instead of the simplistic rules used
by Maimra
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BE(persoul, AT(persoU3 )) V BE(person,. AT(persou ) )V
GO(persoul, [PatIh 1) V GO(person1 . FRONI(persoU3 ))V

GO(persou1 . TO(person.,)) V GO(persoul, [path F ROM( person3 ). TO( person.,)])

John rolled.
BE(person2, AT(personA) V BE(persou,. AT(person1 ))V

GO(person9, [path J) V GO(person2 , FROMl(perSon 3 ))V
GO(person2 . TO(person1 )) V GO(person,, [p,,t, FROM(person 3 ). TO(person1 )])

Mary rolled.
BE(perSO113 , AT(persoul)) V BE(perSon3 . AT(person9 ,))V

GO(perSOn 3 . [path ]) V G.O(person 3 . FROM (persou1 ))V
GO( person3 . TO( person2,)) V GO( person13 , [Path FROM (person1 ). TO( person., )j)

Bill rolled.
BE(objectl, AT( person1 )) V BE(object 1 . AT(person.,) )V

GO(object 1 . [Path ]) V GO(objectl. FROM (person ) )V
GO(object1 . TO(person2 ))) V GO(objectl, [Path FROM(person1 ). TO(person2 )])

The cup rolled.
BE(person 3 , AT(person1 )) V BE(person 3 , AT(person2 ))V

GO(person 3 , [Path ]) V GO(persOn 3 , FROM (person1 ) )V
GO( person3 , TO( person2))) V GO(person 3 . [path FROM (person1 ). TO( person2 )])

Bill ran to Mary.
BE(person 3 , AT(person1 )) V BE(person 3. AT(person,))V

GO( person3 , [Path 1) V GO( person3 . FROM (person1 ) )V
GO( person3 , TO(person 2 )) V GO(person 3 , [Path FROMt(person 1 ). TO( person2 ))])

Bill ran from John.
BE(person 3 , AT( person1 )) V BE(person3 , AT(object1 ))V

GO(person 3 . [Path ]) V GO(person3 . FROM (person 1 ) )V
GO( person3 , TO(objectl)) V GO(persoU3 , [Path FROI( person1 ). TO(object1 )])

Bill ran to the cup.
BE(object1 , AT(person1 )) V BE(object1 , AT(person.2 ))V

GO(object 1 , [Path ]) V GO(objecti, FROM(person1 ))V
GO0(object1 , TO(person2))) V GO(objecti, [Path F ROM ( person,). TO( person2 ))])

The cup slid from John to Mary.
ORIENT(personl. TO(person2 ) )V
ORIENT(person 2 . TO(person 3 ))V
ORIENT( person3 , TO(person1 ))

John faced Mary.

Figure 4.2: A sampie corpus presented to both Maim raand Davra. The corpus exhibits referential
uncertainty in that each utterance is paired with several possible meanings. Neither Maim ranor
Davra are told which is the correct meaning, only that. one of the meanings is correct.
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(OR (S (NP (N BILL) (VP (V RAN))) (VP (V FROM) (NP (U JOHN))))
(S (NP (N BILL))

(OR (VP (V RAN) (PP (P FROM)) (NP ( JOHNM)))
(VP (V RAN) (VP (V FROM)) (NP (N JOHN)))
(VP (V RAN) (NP (N FROM)) (NP (N JOHN)))
(VP (OR (AUX (DO RAN))

(AUX (BE RAN))
(AUX (MODAL RAN))
(AUX (TO RAN))

(AUX (HAVE RAN)))
(V FROM)
(NP (N JOHN)))

(VP (V RAN)
(OR (NP (DET FROM) (N JOHN))

(NP (N FROM) (NP (N JOHN)))))
(VP (V RAN) (VP (V FROM) (NP (N JOHN))))
(VP (V RAN) (PP (P FROM) (NP (N JOHN)))))))

MAIMRA uses a derivative of the CKY parsing algorithm (Kasami 1965. Younger 1967) to produce
the disjunctive parse tree. Thus the size of disjunctive parse tree will always be polynomial in the length
of the input.. The resulting tree may appear larger when printed since a given entry from the well-
formed substring table may be a constituent of several other entries and thus may be printed multiple
times. Nonetheless, the internal representation of the parse tree is factored to retain its polynomial
size. This factored representation stores only a single copy of each subtree in the disjunctive parse tree.
even though that subtree may be referenced multiple times. Furthermore, the fracturing process, to be
described shortly, preserves the factored representation so that the resulting disjunctive lexicon formulae
are kept. to a manageable size.

After constructing the disjunctive parse tree for an input, utterance. NIAIMRA applies the linking rule
in reverse to produce a disjunctive lexicon formula. This second phase is a variant of the fracturing
procedure described in section 3.1. Recall that, the fracturing procedure recursively applies to two ar-
guments: a parse tree fragment and a meaning expression fragment. For the base case. when the parse
tree fragment consists of a terminal node, a lexical entry proposition is formed, pairing the word asso-
ciated with that node with the syntactic category labeling that node and the input meaning expression
fragment. For example, fracturing the parse tree fragment (p to) with the meaning expression frag-
ment (from ?0) would produce the lexical entry proposition (definition to p (from ?0)). For the
inductive case. MAIMRA forms all possible ways of assigning subexpressions of the meaning expression
fragment as the meaning of each complement constituent of the parse tree fragment. MAIYMTRA then
replaces those subexpressions in the original meaning expression fragment with variables, and assigns
the resulting meaning expression fragment to the head constituent of the parse tree fragment. Each con-
stituent of the parse tree fragment is then recursively fractured with its associated meaning expression
fragment to yield a disjunctive lexicon formula. For each possible subexpression assignment. MAIMRA
forms a conjunction of the lexicon formulae returned for each constituent. MAIMRA then forms a disjunc-
tion of these conjunctions. Thus the recursive fracturing process produces a formula with alternating
layers of disjunction and conjunction.

This process of constructing a disjunctive lexicon formula is best illustrated by way of an example.

Consider fracturing the following parse tree:
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S

NP \'
John

faocd Malry

along with the meaning expression ORIENT(John, TOWARD(Mary)). This ineaning expression lht,
four subexpressions. namely 1, John, Mary, and TOWARD(Mary). Each of these can be assigned
as a potential meaning for John. Thus, the following reduction illustrates the first step in producing a
disjunctive lexicon formula.6

fracture( John fa ed Mary, ORIENT(John. TOWARD(Mary)))

4
(i) (John= I Afracture(factd Mar.yORIENT(John, TO\VARD(Mary))))V
(ii) (John = John A fracture(faced Mary, ORIENT(x, TOWARD(Mary))))V
(iii) (John = MaryA fracture(faced Mar y, 0RIENT(John, TOW\ARD(x))) )V
(iv) (John = TOWARD(Mary) A fracture(factd Mary, ORIENT(John, X)))

In case (i), when John is assigned _L as its meaning, Mary can then obviously take on as its meaning
any of the four subexpressions of ORIENT(John, TOWARD(Mary)).

fracture(faced Mary, ORIENT(John.TOWARD(Mary)))
4

(AMary = A faced = ORIENT(John. TO WARD(Mary)) )V
(Mary = John A faced = ORIENT(x, TOWARD(Mary)))V
(Mary = Mary A faced = ORIENT(John, TOWARD(x)))V
(Mary = TOWARD(Mary) A faced = ORIENT(John, x))

Il case (ii), when John is assigned John as its meaning, Mary can take on three possible meanings.

fracture(faced Mary, ORIENT(x, TOWARD(Mary)))

4
(Mary = Mr A faced = ORIENT(x. TOWARD(Mary)))V
(Mary = Mary A faced = ORIENT(.r, TOWVAR D(y)))V
(Mary = TOWARD(Mary) A faced = ORIENT(., y))

In case (iii), when John is assigned Mary as its meaning, Mary can take on two possible meanings.

fracture(faced Mary, ORIENT(John, TO WARD( .)))

4
(Mary = L A faced = ORIENT(John. TOWARD(x)))V
(Mary = John A faced = ORIENT(x', TOW ARD(y)))

'The astute reader may wonder why a fifth possibility is not considered where the entire expres-
sion ORIENT(John, TOWARD(Mary)) is associated with John and the meaning of faced Mary is taken to be simply
the variable x. Maimraadopts an additional restriction that does not allow a head to ti.ke on a meaning that is simply a
variable, thus ruling out this fifth possibility. This restriction can be interpreted as stating that every head must contribute
some semantic content to the meaning of its parent phrase. The motivation for this restriction is simply computational
efficiency. Adopting this restriction reduces the ambiguity introduced during the fracturing process. The downside of this
restriction is that it rules out the standard analysis of the preposition of. In this analysis, of it is treated simply as a case
marker such that the meaning of the phrase of NP would be taken to be the same as the meaning of the NP. This requires
taking the meaning of of to be simply the variable x'. in contradiction to the above restriction.
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In case (iv), when John is assigned TOWAR l)( Mlary) as its meaning. .Uary can also lakeon two possible•
meanings.

fracture(factd Mary, ORIENT(John. x))

(AMary = I A faced = ORIENT(Johnjx))V

(Marq = John A faced = ORIENT(x,y))

Putting this all together yields the following disjunctive lexicon formula.

(or (and Joh n = I
(or (and Mary _

faced = ORIENT(Jolh. TOWAR D(rMary)))

(and Mary= John
faced = ORIENT(x, TOWARD(Mary)))

(and Mary = Mary
faced = ORIENT(John. TOWA RD(x)))

(and Mary = TOWARD(Mary)
faced = ORIENT(Jolin-x))))

(and John = John
(or (and Mary I

faced = ORIENT(.r. TOWARD(Mary)))
(and Mary = Mary

faced = ORIENT(x, TO\VARD(y)))
(and Mary = TOWARD(Mary)

faced = ORIENT(x, y))))
(and John = Mary

(or (and Mary= I
faced = ORIENT(John, TOWARD(x)))

(and Mary= John
faced = ORIENT(x, TOWA RD(y)))))

(and John = TOWARD(Mary)
(or (and Mary= 1

faced = ORIENT(John, x))
(and Mary John

faced = ORIENT(x..y)))))

The fracturing procedure actually used by MAIMRA is slightly more complex than the above pro-
cedure, in two ways. First, it, is extended to accept, disjunctive parse trees. Fracturing a disjunctive
parse tree fragment with a meaning expression fragment is simply the disjunction of the result of frac-
turing each disjunct in the disjunctive parse tree fragment with the same meaning expression fragment.
MAIMRA memoizes recursive calls to fracture to mirror the factored nature of the disjunctive parse
tree in the resulting disjunctive lexicon formula.7 Second. recall that to handle referential uncertainty.
each input utterance is associated with a set of meaning expressions. MAIMRA fractures each meaning
expression for the current utterance with the same disjunctive parse tree for this utterance to produce a
disjunctive lexicon formula. A disjunction is formed from these formulae to yield the aggregate lexicon
formula for the innut utterance.

7Memoization eliminates multiple evaluations of a function called with the same argumnents. The first tint- f(xj.. ,
is called, the function is exaluated and the result stored in a table. Subsequent calls to f with with the same argu-
ments ai..... xin retrieve this result from the table instead of reevaluating f(xi ... , x,,). An additional benefit of ne1no-
ization is that multiple evaluations of a function called with the same arguments return pointers te the same copy of the
result thus creating a factored representation.
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John: [N] person1
Mary: [N] person.,
Bill: [N] person3

cup: [N] object,
Ith: [NSPEC.I /

roll(d: [V] (O(.r [patiý 1)
ran: [V] GO(.. y)
slid: [V] -O(,r [Path Y- :])
faccd: IV] ORIENT(x. TO(y))
front: [N,VP] FROM(x)
to: [NV,P] TO(x')

Figure 4.3: The lexicon inferred by M aim rafor the corpus from figure 4.2. Note that M aim rahas
converged to a unique word-to-meaning mapping for each word in the corpus. as well as a unique
word-to-category mapping for all but two words.

Appendix A illustrates the series of disjunctive parse trees and disjunctive lexicon formulae produced
by MAIMRA when processing the corpus from figure 4.2. Each lexicon formula produced corresponds
to a single input utterance. MAIMRA determines the lexicon corresponding tc the corpus by forming a
conjunction of these lexicon formulae, conjoining this with a conjunction of monosemy formulae to imple-
ment. the monosemy constraint, and finding satisfying truth assignments to the lexical entry propositions
in the entire resulting formula. MAIMRA actually performs this process repeatedly as each new utterance
arrives. Even though there may be multiple consistent lexica during intermediate stages when only part
of the corpus has been processed, nonetheless it may be possible to rule out. some word-to-category or
word-to-meaning mappings. NIAIMRA can use this partial information to reduce the size of structures
produced when processing subsequent. input utterances. I have already discussed how reduced lexical
ambiguity can result in smaller disjunctive parse trees. Furthermore, reduced structural ambiguity,
combined with ruling out impossible word-to-meaning mappings, can result, in the production of smaller
disjunctive lexicon formulae. This is evident when comparing the lexicon formula corresponding to Bill
ran to Mary on page 211 with the lexicon formula corresponding to Bill ran from John on page 214.
Though the input, utterances are similar, and are paired with analogous meaning expressions, the latter
utterance yields a smaller disjunctive lexicon formula due to the knowledge gleaned from prior input.

Using the above techniques, MAIMRA can successfully derive the lexicon shown in figure 4.3 fronm
the corpus given in figure 4.2. Inferring this lexicon requires several minutes of elapsed time on a
Symbolics XL1200TM computer. Thus MAIMRA converges to a unique and correct meaning for every
word in the corpus as well as a unique and correct syntactic category for all but two of the words in the
corpus.

From a theoretical perspective, the lexicon produced by MAIMRA is independent of the order in
which the corpus is processed. This is because each utterance in the corpus is processed to yield a
lexicon formula which characterizes those lexica that. are consistent, with that utterance. MAIMRA
simply conjoins those formulae to find a lexicon consistent with the entire corpus. As a practical matter.
however, 'he computational complexity of the learning algorithm is affected by the processing order,
since MAIMRA uses previously acquired knowledge to reduce the size of subsequently generated lexicon
formulae. MAIMRA works best if the corpus is ordered so that shorter utterances and utterances with
fewer unknown words appear first.
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4.2 Davra

Despite MIAIMRA s success in inferring a lexicon froin seinat ically annotated input utterances, t he theory
underlying MAIMRA suffers from two severe limitations that preclude it from being a complete account
of child language acquisition. First, NIAIMRA relies on a fixed context-free grammar being available prior
to the lexicon acquisition process. It appears unreasonable to assumie that children know the grammar
of their native language before they learn the syntactic categories or meanings of any words.. lore likely.
they must learn the grammar either along with, or subsequent to, the lexicon. Second, NAIMRA ha.S
been tested only on an English corpus. A satisfying theory of language acquisition must l)e capable of
acquiring any human language, not just English.

In attempt to rectify the above two shortcomings, a second system called DAVRA (Siskind 1991)
was constructed. DAVRA is very similar to MAIMRA in many ways. Both represent word, phrase, and
utterance meanings using the same form of Jackendovian conceptual structure meaning expressions.
Furthermore, both receive input in the same form: a corpus of utterances, each paired with a set of
potential meanings for that utterance. Thus DAVRA. like MAIMRA, learns in the presence of referential
uncertainty. DAVRA differs from MIAIMRA however, in basing its syntactic theory on a parameterized
version of X theory rather than on a fixed context-free grammar given as input to the learner. DAVRA's
innate endowment includes the formulation of X theory, embodied in the acquisition model. but does not
include the parameter settings particular to the language being learned. DAVRA acquires the parameter
settings from the corpus. simultaneously with the lexicon, using the cross-situational learning architec-
ture described in section 2.1. Thus DAVRA learns three things-parameter settings, word-to-category
mappings, and word-to-meaning mappings-without any prior knowledge of such parameter settings or
mappings.

The variant of X theory incorporated into DAVRA can be summarized as follows.

1. The syntactic structures constructed by DAVRA are binary branching. Each node has zero. one.
or two children. Nodes with no children are terminals. Nodes with one or two children are
head-complement structures. One child of a head-complenment structure is always the head. The
remaining child, if present, is its complement.

2. DAVRA labels each node with one of the category labels X, XspEc,, X, or XP. where X is one of
the base categories N, V, P. or I.

3. Terminals must labeled with either XSPEC or X for some base category X.

4. Non-terminal nodes take on one of the following five configurations

XP XP X X

F XSPECý N XSPEC' Pj>

(a) (b) (c) (d) (e)

where X and Y freely range over the base categories. The nodes enclosed in boxes indicate which
child is taken to be the head of a head-complement, structure as far as the linking rule is concerned.

5 The linguistic literature has waffled somewhat over the term SPEC, sometimes considering it to be a category label, or
class of category labels such as determiner, and other times taking it to be the name of a position, where determiners, among
other things, can appear. Davra takes XSPEC to be a class 4f category labels-NSpEC, for instance, being a synonym
for DET. This is a somewhat outdated approach to X" theory. In contrast, Kenuniatakes SPEC' to be a position, namely
the non-adjunct sister to a node of bar-level one. This approach is more in line with the variant of K theory presented in
Chomsky (i985). Davra should not be considered a priori incorrect because of this. Many current authors still adopt the
former position (cf. Lightfoot 1991 pp. 186-187).
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A given language will allow only a subset of tile above five structures however. One binary-valued
parameter detrmines whether the language is SPE('-initial or SPE('-final. Structure (c) is not
allowed if the language is SPEC-initial, while structure (b) is not allowed if the language is SPE(-
final. A second binary-valued parameter determines whether tile language is head-initial or head-
final. Structure (e) is not allowed if the language is head-initial, while structure (d) is not allowed
if the language is head-final.

5. The top-level node corresponding to an input utterance must be labeled 11'.

6. Tile category label ISPEC is taken to be a synonym for the category label NP.

7. The category label 1 is taken to be a synonym for the category label VP.

In addition to the above variant ofX theory, DAVRA incorporates the linking rule given in section 3.1.
This linking rule is simplified in DAVRA since, unlike NIAIMRA's syntactic theory. DAVRA'S synt act ic tihe-
ory allows only binary branching structures. 9 Furthermore, like MAINIRA. DAVRA adopts two additional
restrictions First, the meaning expressions associated with complements must be variable-free. This
eliminates the need to rename variables during the linking process. Second. the meaning expression as-
sociated with a head must not be simply a variable. With these restrictions, the linking rule incorporated
into DAVRA can be summarized by the following five cases

0 0(1') o(1') o o

0i i)(i) (IV) (V)

where the nodes enclosed in boxes indicate the heads of head-complement structures. Case (i) is used for
unary branching structures of type (a). Both cases (ii) and (iv) apply to SPEC-final structures like (c)
and head-initial structures like (d), while both cases (iii) and (v) apply to SPEC-initial structures like (b)
and head-final structures like (e). For example, in English, a head-initial language, case (ii) would be used
to derive the meaning of from John, namely FROM(Johni), from FROM(.') and John. the meanings
of from and John respectively. Likewise, case (v) would be used to derive the meaning of th( book,
namely book, from I_ and book, the meanings of th( and book respectively. In Japanese. a head-final
language. case (ii) would be used to derive the meaning of Taro kara, namely FROM(Taro), from Taro
and FROM(x), the meanings of Taro and kara respectively.

The nodes in the syntactic tree constructed by DAVRA correspond to substrings of the input utter-
ance in the standard fashion that disallows crossovers. DAVRA allows non-overt nodes, i.e. nodes that
correspond to empty substrings. Both terminal and non-terminals nodes may be non-overt. DAVRA

enforces the constraint, that overt, terminal nodes correspond to a single word of the input utterance.
Furthermore, DAVRA enforces several additional constraints designed to reduce the size of the search
space in the underlying language acquisition task. First, nodes labeled X must be overt. Second. non-
overt nodes must be assigned 1 as their meaning. Stated informally, this means that non-overt phrases
cannot contribute substantive semantic content to an utterance. Finally, any node labeled XP cainot
be assigned I_ as its meaning.

For reasons of simplicity, DAVRA does not, generate disjunctive lexicon formulae the way NIAIMRA

does. Instead, the design of DAVRA directly follows the architecture from figure 2.2. DAVRA retains the
entire corpus in memory and tries to find a lexicon and a set. of parameter settings that are consistent
across t~his corpus. DAVRA employs straightforward blind search to find this lexicon and set of parameter

9 Restricting the linking rule to binary branching structures is not a severe limitation. Most current varianls of N theory

adopt the binary branching restriction as it appears to be sufficient. to describe the requisite syntactic phenomena.



4.2. DA VRA 7

settings. Tile motivation behind the design of DAVRA was not thhe construction of an accurate proces,-
model of child language acquisition. DAVRA's use of blind search over a corpus retained in nmemmory is not
a plausible process model. It does. however, allow one to determine whether a linguistic theory of the
form described above, namely parameterized X theory. offers enough constraint to uniquely determine
the lexicon and parameter settings when supplied with a very small corpus. Only oncet it has been
determined that the theory is sulficiently constraining does it make sense to explore miore eflicient anid
plausible search algoritlhms.

The linguistic theory incorporated in DAVRA can be phrased as a simlple nondetermninistic program
that describes the search space for possible lexica and parameter settings. This programi. which I will
call fracture, operates in a top-down divide-and-conquer fashion where nondeterministic choice-s are
made at each divide-and-conquer step. Backtracking through these nondeterminnistic choices allows
straightforward though inefficient search for possible solutions. The divide-and-conquer steps interleave
a top-down parsing strategy with the fracturing procedure discussed in section 3.1.

One such nondeterministic path through the divide-and-conquer sequence is illustrated in figure 4.4.
For each divide-and-conquer step, fracture is called with three arguments: a phrase. a meaning expres-
sion to be associated with that phrase, and a category label for that phrase. At the top level, fracture
is called with an input utterance paired nondeterministically with one of its possible meanings. 'Flie
input utterance is labeled with the category IP.

Several nondeterministic choices are made at. each recursive call to fracture. First. the phrase is
split into two suhphrases. For example, the input phrase The cup slid front John to Mary might be
split, into the subphrases The cup and -slid from John to Mary. The split point is chosen nondeter-
ministrically. Second, the SPEC-initial parameter is nondeterninistically set to true. This allows tIhe
first subphrase to be assigned the category ISPEC', which is treated as NP. and the second subphrase
to be assigned the category 1, which is treated as VP. Since I is the head of IP. some subexpression
of GO(cup, [path FRONI(John),TO(Mary))) is nondeterministically selected. namely cup. and asso-
ciated with the first subphrase, as this subphrase is the complement. The subexpression cup is then
extracted from GO(cup, [Path FROM(Jolm),TO(Mary)]), leaving a variable behind, to yield the ex-
pression GO(X, [Path FROM(John),TO(Mary)]). This meaning expression fragment is then assigned to
the head subphrase. The f racture routine is then recursively called on each of the two subphrases wit hi
their associated meaning expression fragments and category laoels. This recursive process terminates
when fracture is called on a singleton word. In this case, a lexical entry is created mapping the word
to the given meaning expression and syntactic c. r gory label. Figure 4.4 illustrates two such mappings:
one from the word th. to the category label NSPEc and meaning expression 1, and one from the word
cup to the category label N and meaning expression cup.

The fracture routine makes many nondeterministic choices at. each step. For pedagogical purposes.
figure 4.4 illustrates a path containing the correct choices, though many alternative paths contain incor-
rect choices that are filtered out by backtracking. Backtracking is initiated by two types of failure. One
type occurs when an attempt is made to set a parameter to a different setting than has already been
made. The linguistic theory incorporated into DAVRA states that a given language is either head-initial
or head-final but not both. The second type occurs when an attempt is made to create a lexical entry
for a word which assigns it a different meaning or syntactic category than it. has already been assigned.
This is an embodiment of the monosemy constraint.

The nondeterministic search process just. described can be written as a program in nondetermninistic
Lisp(Siskind and McAllester 1992). This program is really quite small and modular. An annotated
description of the essential routines in this program is given below. It can be seen that this program
straightforwardly embodies the linguistic theory stated above.

(defun fracture (words category meaning)

(declare (special categories head-initial? spec-initial? lexicon))
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The cup slid from John to Mary.
GO(cup, [Path FROM(John), TO(Mary)])

IP

The cup slid from John to Mary
cup GO(x, [Path FROM(John), TO(Mary)])
NP VP

The cup
± cup

NSPEC N

Figure 4.4: Davra incorporates a divide-and-conquer search strategy illustrated by this figure. This

process is embodied in a recursive routine called fracture which takes three arguments: a phrase.
a meaning expression fragment, and a category label. First, the phrase is nondeterministically split
into two subphrases. Next, the meaning expression fragment is nondeterministically split into two
submeanings, one to be assigned to each subphrase. Finally, X theory determines the category
labels to assign to each subphrase given the input category label. Each subphrase is then recursively

fractured with its associated submeaning and category label. The recursion terminates when a single
word is assigned a category and meaning. There may be many possible divide-and-conquer paths due

to nondeterminism. This figure illustrates just a portion of one such path, the correct one. Davra
enumerates all possible divide-and-conquer paths to find those that contain consistent parameter
settings, as well as consistent word-to-category and word-to-meaning mappings, across the entire
corpus.
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Tile essence of [)•A'RA is the routine fracture. Fracture atte•npts to assign a syntactic category label

and meaning expression fragment to a list of words. The basic strategy is top down: niondeteritiilI,,-

tically split words into two phrases, a head and a complement: ioitldeternliiniistically assign part of the

parent meaning to the head and part to tle coimlemiienit according to thli linking rule: and recursiv•,ly

call fracture oil both the head and comiplemiientI. This routine uses four pieces of iiforniation global

to the language acquisition process: the base, categories that lproject into the X system, a flag inidi-

cating whether the language is head-initial? or final, another flag indicating whether the language is

spec-initial? or final, and the lexicon, a timap fronm words to their syntactic categories., and iimeaniiigs.

(if (and (consp category) (eq (second category) 'p) (eq meaning '_L)) (fail))

The above statemtent impleenteis the t bird addit ional restriction, namely that a node labeled X P calillot
have I as its mneaning.

(if (and (null words) (not (eq meaning 'l))) (fail))

The above statement. implements the second additional restriction. namely that non-overt nodes iiiust

be assigned I_ as their meaning.

(cond
((equal category '(i spec)) (fracture words '(n p) meaning))

((equal category '(i bar)) (fracture words '(v p) meaning))

There are five cases in the fracture routine. The above two cases implement principles 6 and 7 of the

variant of X theory presented on page 55 (that ISPE( is processed as NP and that I is proce•ssed as VP).

((and (consp category) (eq (second category) 'bar))

(either
(fracture words (first category) meaning)

'rite third case handles phrases of type X. A node of category X can be either unary or binary branching.

A nondeternninistic choice is made between the two by the either clause. The above statemient hanidles

the case of unary branching.

(let* ((split (split words))
(head (if head-initial? (first split) (second split)))
(complement (if head-initial? (second split) (first split))))

(if (null head) (fail))
(if (null complement) (fail))
(let ((complement-meaning (possible-complement-meaning meaning)))
(fracture complement '(,(member-of categories) p) complement-meaning)

(fracture
head category (possible-head-meaning complement-meaning meaning))))))

The above statement implements the second alternative for phrases of type X. It iiondeternunistically

splits the phrase into two halves, one to become the head. the other to become the complement. The

choice of which half becomes the head, and which the complement, is determined by the head-initial?

paramneter. Note that, the head must not. be null, since the first additional restriction states that nodes

labeled X must be overt. Furthermore, the complement must not, be null, since complements are la-
beled XP. nodes labeled XP cannot have I as their meaning. and non-overt nodes must tmean 1. The
routines possible-complement -meaning and possible-head-meaning inmplenuent the liiking process

in reverse. Given a parent, meaning, they nondeternninistically return all possible head ninaligs and

complement-meanings that call combine to form the parent meaning. They will be described in greater
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detail later. Two recursive calls are made to fracture, one to fracture the complement as a phrase
of the category YP, nondeterministically for some base category Y, and one to fracture the head as a
phrase of category X.

((and (consp category) (eq (second category) 'p))
(let* ((split (split words))

(head (if spec-initial? (second split) (first split)))
(complement (if spec-initial? (first split) (second split))))

(if (null head) (fail))
(let ((complement-meaning (possible-complement-meaning meaning)))
(fracture complement '(,(first category) spec) complement-meaning)
(fracture
head
'(,(first category) bar)
(possible-head-meaning complement-meaning meaning)))))

The fourth case handles phrases of type XP. Like before, it nondeterministically splits the phrase into
two halves. one to become the head, the other to become the complement (in this case actually the
specifier). The choice of which half becomes the head, and which the complement. is determined by the
spec-initial? parameter. Again, note that, the head must not be null, since the first additional restric-
tion states that nodes labeled X must be overt. Like before, the parent meaning is nondeterministically
divided into a head meaning and an complement-meaning. Two recursive calls are made to fracture,
one to fracture the complement as a phrase of category XSPEC and one to fracture the head as a phrase
of category X.

((or (and (consp category) (eq (second category) 'spec)) (symbolp category))
(unless (null words)
(unless (null (rest words)) (fail))
(let* ((new-definition (list category (canonicalize-meaning meaning)))

(old-definition (gethash (first words) lexicon)))
(if old-definition

(unless (equal new-definition old-definition) (fail))
(locally-setf (gethash (first words) lexicon) new-definition)))))))

The final case handles terminals. According to principle 3 of the variant, of X theory presented on
page 55, categories XSPEC and base categories X are terminal. A lexical entry comprising a syntactic
category and meaning is created. If this word already has a different, lexical entry then enforce the
monosemy constraint by failing. If a terminal is non-overt no lexical entry is added to the lexicon.

(defun subexpression (expression)
(if (consp expression)

(either expression (subexpression (member-of (rest expression))))
expression))

(defun possible-complement-meaning (parent-meaning)
(either '1

(let ((complement-meaning (subexpression parent-meaning)))
(unless (variable-free? complement-meaning) (fail))
(if (equal complement-meaning parent-meaning) (fail))
complement-meaning)))
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The function subexpression tondeterininistiically ret urns soine suI)expression of an expression. Ili,
function possible-complement-meaning iniplehients half of the inverse linking rule. It ret urns ipossibIh
complement-meanings that call link with all appropriate head itteaning to yield thie parent-meaning.
Such a complement-meaning can be either I. or somne subexpressionl of the parent-meaning. Renwmnber
that the linking rule carries two stipulations. First. mneanings of contplentents must he variable-frev. Thu.,
complement-meanings containing variables are filtered out. Second, a head catnot have a ineaning which
is just a variable. If the complement-meaning were to be the saute as tile parent-meaning. Ilhell thi
head ineaning would have to be just a variable. Thus. complement-meanings which art, thie sant, as Ihe
parent-meaning are filtered out.

(defun variable-substitute (subexpression expression variable)
(cond ((equal expression subexpression) (either variable expression))

((consp expression)
(cons (variable-substitute subexpression (car expression) variable)

(variable-substitute subexpression (cdr expression) variable)))
(t expression)))

(defun possible-head-meaning (complement-meaning parent-meaning)
(if (eq complement-meaning '1)

parent-meaning
(let ((head-meaning

(variable-substitute
complement-meaning
parent -meaning
(make-variable (0+ (highest-variable parent-meaning))))))

(if (equal head-meaning parent-meaning) (fail))
head-meaning)))

The function variable-substitute takes a meaning expression and returns a similar expression
where subexpressions of that expression which are equal to subexpression are nondeterministically
either replaced, or not, replaced, by a variable. The function possible-head-meaning inplenwints
the other half of the inverse linking rule. It, returns possible head-meanings that call link with a
given complement-meaning to yield the parent-meaning. If the complement-meaning is _ then thle
head-meaning is the same as the parent-meaning. Otherwise, we nondeterininistically substitute a
new variable for occurrences of the complement-meaning within the parent-meaning. Note that since
the linking rule requires that the complement meaning be substituted for soin variable in tile head
meaning, when doing the nondeterministic inverse substitution of a variable for occurrences of the
complement-meaning in the parent-meaning, we must guarantee that at least one such substitution
has occurred. We must filter out a head-meaning that is equal to the parent-meaning since a substi-
tution has not occurred.

DAVRA was presented with the same corpus that was given to MAIMRA. This corpus is illustrated
in figure 4.2. This corpus consists of nine multi-word utterances ranging in length front two to seven
words. Each utterance is paired with between three and six possible meaning expressions. (Given this
corpus, DAVRA is able to learn the lexicon and parameter settings given in figure 4.5. Inferring this
information requires about an hour of elapsed time on a Symbolics XL1200TM computer. Note that
DAVRA determines that, the linguistic theory allows the corpus to have only one consistent analysis
where the language is head-initial and SPEC-initial. Furthermore. the theory and corpus together fully
determine most of the lexicon. DAVRA finds unique mappings for all words to their associated meaning
expressions and for all but. two words to their associated syntactic categories. For example. the linguist ic
theory generates the corpus only under the assutiption that cup is a noun which means object, ;and slid
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Head Initial, SPEC Initial.
John: [N] person,
Mary: [N] person.
Bill: [N] person3
cup: IN] object 1
the: [NspEC-] 1
rolled: [V] GO(X, [Path I)
ran: [V] GO(x, y)
slid: [V] GO(x, [path Y, :1)
faced: [V] ORIENT(x..TO(y))
from: [N,VP] FROM(x)
to: [N,V.P] TO(x)

Figure 4.5: The lexicon and parameter settings inferred by Davra for the corpus front figure 4.2.
Note that Davra has uniquely determined that English is head-initial and SPEC'-initial. Further-
more, Davra has converged to a unique word-to-meaning mapping for each word in the corpus. ai
well as a unique word-to-category mapping for all but two words.

is a verb which means GO(X, [Path y, zJ). The only language-specific information which DAVRA is not able
to converge on is the syntactic category of the words from and to. It is easy to see that DAVRA can never
uniquely determine that prepositions like front and to should be labeled with category P since according
to the linguistic theory incorporated into DAVRA, words labeled N and V can co-occur anywhere words
labeled with category P can appear. This is a shortcoming of DAVRA that. can be addressed by the
addition of case theory and c-selection principles. Case theory includes a case filter which states that
overt noun phrases must receive case, an abstract property assigned by certain lexical items to certain
complement positions. The case filter would not allow from to be labeled with category N since nouns
do not assign case to their complement and thus the noun phrase John in Bill ran from John would
not be assigned case. C-selection principles state that certain categories must appear as complements
of other specific categories. For example, a verb phrase must appear as the complement of an inflection.
This principle would not allow from to be labeled with category 1 since from John does not. appear as
the complement of an inflectional element in Bill ran from John. The next, section will discuss KENUNIA.

a system built subsequent to DAVRA, that incorporates such additional linguistic constraints.
As discussed previously, one of the main objectives for DAVRA was to construct, a single linguistic

theory that could acquire lexica and parameter settings for different languages. To test the cross-
linguistic applicability of DAVRA, the corpus in figure 4.2 was translated from English to Japanese.
retaining the same non-linguistic annotation."r The resulting linguistic component of the Japanese
corpus is illustrated in figure 4.6. Note that the syntax of Japanese differs from English in a number of
key ways. First, Japanese is a head-final language; prepositions follow their complements (and are thus
really postpositions) and the underlying word order is subject-object-verb. Second. Japanese subjects
are generally marked with the word ga. Third, the Japanese word tachimukau takes a prepositional
phrase complement (i.e. Eriko ni) while the correspnnding English word faced takes a direct object
(i.e. faced Mary).

When presented with this Japanese corpus, DAVRA produced the lexicon and parameter settings given
in figure 4.7. Processing this corpus took about twelve hours of elapsed time onl a Symbolics XL12 0 0TTM

computer. Note that. DAVRA produced essentially the same result for the Japanese corpus as for the

101 would like to thank Linda Hershenson, Michael Caine. and Yasuo Kagawa, who graciously performed this translation

for me.
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Taro go korogashimashita.
ErLko ga korogash/nmashda.
Yasu go korogashimashila.
Chawan ga korogashinashila.
Yasu ga Eriko nn hash ntnash ta.
Yasu go Taro kara hashtmiashila.
Yasu go cha wan ni hash rmnash ita.
Chawan ga Taro kara Eriko ni subtrMnashila.
Taro go Eriko nt tacharukau.

Figure 4.6: The linguistic component of a sample Japanese corpus presented to Davra. This corpus
is a translation of the English corpus given in figure 4.2. The non-linguistic component of the
Japanese corpus is identical to that of the English corpus.

English corpus despite the syntactic differences between the two languages. Thus DAVRA determined that
Japanese was head-final but SPEC-initial, accounting for the postpositional and verb-final properties.
DAVRA was not hindered by the presence of go, and by assigning it the meaning expression I. determined
that its meaning was outside the realm of the Jackendovian semantic representation used." Just as for
the English corpus, DAVRA determines unique word-to-meaning mappings for all words in the Japanese
corpus, as well as unique word-to-category mappings for all but two words in that corpus. DAVRA
exhibits the same limitations in Japanese as in English and is unable to narrow the possible syntactic
categories assigned to prepositions like kara and nt. Notice however, that DAVRA does determine that
tachimakau does not incorporate a path in its meaning representation (i.e. ORIENT(.ry)), while fac(d
does (i.e. ORIENT(x, TO(y))), accounting for the different argument structure of these two words.

Thus DAVRA has been successful as an initial attempt to demonstrate cross-linguistic language ac-
quisition. DAVRA has simultaneously learned syntactic parameter settings, and a lexicon mapping words
to their syntactic categories and meanings, with no prior information of that type, for very small corpora
in two different languages.

As was the case for MAIMRA. the language model produced by DAVRA does not depend on the order
of the utterances in the corpus since DAVRA simply finds all language models consistent with the entire
corpus. Again however, the complexity of the search task can heavily depend on the order in which the
utterances are presented to DAVRA. The search space grows intractably large if the corpus is ordered
so that earlier utterances have many consistent language models that are filtered out only by latter
utterances.

4.2.1 Alternate Search Strategy for Davra

As discussed previously, one of the unsatisfying aspects of DAVRA is its use of blind search across the
entire corpus retained in memory. For just this reason, this is not a plausible process model for child
language acquisition. An initial experiment was undertaken to explore more plausible alternative learning
strategies within the same linguistic theory used by DAVRA. A different top-level search strategy was
built for DAVRA that retained the same underlying parsing mechanism. This experiment was attempted
only for the English corpus. Furthermore, for this experiment, DAVRA was given the correct parameter
settings as input and asked to learn only the lexicon.

11 Davra assigns the category VSPEC to ga. This is probably not linguistically accurate but nonetheless is consistent

with the limited variant of X theory incorporated into Davra.
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Head Final, SPEC Initial.
Taro: IN] person1
Ernko: [NJ person.,
Yasu: [NJ person3
cha wan: [NJ object 1
ga: [%'spEc] I
korogashimashita: [V] GO(-. [pah ])
hashirtmashita: [V] GO(X. y)
subcrimashila: [V\ GO(X, [Pa,h Y,

tachim ukau: [\] ORIENT(x. y)
kara: [N.V,P] FROM(x)
ni: [N.V.P] TO(x)

Figure 4.7: Davra inferred this lexicon and set of parameter settings when processing the Japanese
utterances from figure 4.6 when paired with the non-linguistic input from figure 4.2. Davra has
correctly determined that Japanese is a head-final language. Furthermore, as in figure 4.5, Davra has
converged on a single correct meaning for all words in the corpus as well as a single correct category
label for all but two words. Note that Davra has determined that the word ga has meaning outside
the realm of Jackendovian conceptual structures and that tachimukat, does not incorporate a path.
in contrast to faced which does.

The alternate search strategy employed is weaker than strong cross-situational learning. In this
strategy, DAVRA processes the input utterances one by one, retaining only two types of information
between utterances: the current hypothesized lexicon and sets of previously tried inconsistent hypotheses.
Once DAVRA processes an utterance, all information about that utterance is discarded, save the above
two types of information. DAVRA starts out with the empty lexicon. When processing each input
utterance, DAVRA searches for an extension to that lexicon that allows the current utterance to meet
the constraints imposed by the linguistic theory and non-linguistic input. The extension must obey the
monosemy constraint, i.e. new words can be assigned an arbitrary lexical entry but words encountered
in previous utterances must be interpreted according to the lexical entries already in the lexicon. There
may be several different extensions, i.e. several different assignments of lexical entries to novel words.
which are consistent with the current utterance. In this case, DAVRA arbitrarily picks only one consistent
extension. If DAVRA is successful in extending the lexicon to account, for the new utterance, the extension
is adopted, the utterance discarded, and processing continues with the next, utterance. (The extended
lexicon might be the same as the previous lexicon if the input utterance does not contain novel words
and can be parsed with the existing lexicon.)

More often, DAVRA is unsuccessful in finding a consistent, extension, as would happen if DAVRA
previously selected the wrong extension, thus making incorrect hypotheses about lexical entries. In this
case, DAVRA attempts to find a small subset. of the lexicon that is inconsistent with the current utterance.
Such a subset, of the lexicon is termed a nogood because it rules out. any superset of that subset as a
potential hypothesized lexicon. In particular, DAVRA finds a nogood N such that no extension of N
allows the current utterance to be parsed, yet removing any single lexical entry from N yields an N' which
can be extended to parse the current utterance. A nogood that has this property is called a minimal
nogood. DAVRA constructs minimal nogoods by a simple linear process when the current lexicon cannot
be extended to parse the input utterance. DAVRA starts out taking the entire current lexicon as the
initial nogood. Lexical entries are removed from this initial nogood one by one and the resulting nogood
tested to see whether it can be extended to parse the input. utterance. If it can, the lexical entry just
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dropped is put hack in the initial nogood. Otherwise. it is discarded. It is vasy to set that this liear
process will produce a mninimal nogood with I the two aforeimentioned properties.

Two things are then done withI the nogood just constructed. First. it I., saved on a list of discovered
nogoods. Whenever, DA\'RA later extends tlie lexicon, the extended lexicon is clicked to see that it i,
not a superset of any previously created nogood. Extensions that are supersels of sonc nogood arte not
consilered. Ini this way DAVRA is guaranteed not to tiake the same mistake twice. Second. onet h xical
entry is selected arbitrarily from the current nogood. This lexical entry is removed from the current
lexicon and a new attempt is inade to extend the resulting lexicon to parse tile current ini put lut el-aice.

The revised search strategy used by DAVRA is similar in nmany ways to Mitchell's 1.77) 9 ,,rsion space
learning algorithin. Mitchell's algorithm was originally formulated for the concept learning prob)lemJ. a
more general task than language acquisition. In concept learning, the learner is presented with a streamn
of instances fronm some instance space. Each input instance is labeled as either aim p ositive or neigatiVe
instance of the concept to be learned. A concept is a total predicate C such that ( '(j') returns true if x
is anl instance of the concept and false otherwise. ('oncepts are chosen fromi a finite set C called the
concept space. The task faced by the concept learner is to select those (' E C such that ( '(.r) is true
for each positive instance in the training set and false for each negative instance in tihe training .e.
Such a concept is said to cover the training set. Though general concept learning allows hot h positive
and negative instances to appear in the input. I consider here only the restricted problem w'hit ih utilizes
positive input instances, since only that portion is relevant to the comparison with the search strategy
used by DAVRA. Mitchell's version space algorithm operates as follows. First, a concept C " is called mor,.
general than a concept C if for all I- in the instance space, ('(.r) - ("(.r). Likewise. a concept C" is called
more specific than a concept C if for all x' in the instance space. ("(ja) - ('('). As Mitchell's algorithm
processes the instance one by one, it maintains a set S of concepts that satisfies two proplerties. First.
each concept C E S must cover the set of instances processed so far. Second. for each concept (' E S
there cannot be a more specific concept C' E C that also covers the set of instances processed so far.
These properties are met. by initializing S to contain the most specific concepts in C and updating S
after processing each instance Ir by replacing those (' E S for which ('(.r) returns false with the miost
specific generalizations C' of C where ("(a') returns true.

During the operation of Mitchell's algorithm, the target concept must always he more general than
every element of S. Furthermore, any concept that is strictly less general than some element of S can
be ruled out as a potential target concept,. The set .1; call be seen as a border, dividing the coincept
space C into two regions, one containing potential target concepts, the other containing those concepts
ruled out as potential target concepts. The ability for S to rule out potential concepts is analogous
to the set of nogoods used by DAVRA's revised search strategy. The analogy can be made explicit as
follows. Each utterance paired with its non-linguistic input is an instance of the concept to be learned.
where concepts are language models. A language model returns true for an instance if some extension
of that model allows the instance to be parsed. One language model is more general than another if
the former is i. subset of the latter. The set of nogoods maintained by DAVRA corresponds to S with
one minor variation: S contains the most specific concepts which cover the input while a nogood is a
most general concept which does not cover the input. The set of nogoods maintained by DAVRA thus
constitutes one side of the bordet of the region bounding potential target concepts while S constitutes
the other side. Modulo these differences, this border call be considered a frontier, which we can take
to be on the same side of the border as in Mitchell's algorithm. Mitchell's algorithm uses the frontier
to constrain the region of potential target concepts. DAVRA however. uses the frontier only to rule out
potential target concepts. For reasons of efficiency, DAVRA maintains a less tight frontier than does
Mitchell's algorithm, ruling out fewer potential target concepts. This less tight frontier is the result of
the following differences between DAVRA aid Mit chell's algorithm. First, Mitchell's algorit hnm initializes
the frontier to contain all of the most specific concepts in C. DAVRA'S initial frontier consists of a single
concept, the current language model. Secotd. Mitchell's algorithm replaces all elements of the frontier
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with their generalizations when those elements do not cover all input instance. DA\ KA replace, only
one elemient of tile frontier, namely the current language model, with its generalizations. when it does
not cover an input instance. F'iiially, wheni all eleniintl of tile fronlie• does not covt.r all input ilnstanice.
Mitchells' algorithli replaces it with all of ti•e Ilmost specific generalization, which do cover thlie iiiJ•lut
iustanice. DAVRA replaces such all elenment with only oite most specific geineralization which Covers tili-
input inlstanc,,.

The, aforenientioied strategy was applied to the EnglI.,h corpus from figure -1.2. Since tIis stralegy
is weaker than strong cross-situational learning, tile corpus is too short to allow I)AVRA to converge to
a correct lexicon. In the absence of a larger corpus. thle existing corpus was repeatedly applied as input
to the alternato, strategy until DA\'RA was able to make a complllete pass through the corpus without
needing to retract any lexical entries. l)AVRA required two passes through the corpus iit figure 1.2 for
convergence and produced the same lexicon as shown in figure -1.5 as output. This strategy required
only a few minutes of elat,sed time on a Symbolics XL 1200T1I computer.

Note that, as formultated above, this strategy simply finds a single consistent lexicon. It does not
determine that the linguistic theory and corpus imply a unique solution. OWe could extend this ltechnique
to determine all solutiois by temporarily ruling out each solution as it was found and continuing tl••
search for further solutions. This is done by considering each solution to be a nogood. No further
solutions can be found when tile eipty nogood is produce(]. \While it may be expensive to determine all
solutions, a variant of this techiiique can be used to determine whether or not the learner has converged
to a unique solution by simply checking whether a single additional solution exists. Also note t hat
unlike the original implementation of DAVRA, the rate of convergence of this revised search strategy is
dependent, on t e order in which utterances are processed. Future work will attempt to quantify tlihe
sensitivity of this search strategy to corpus ordering.

4.3 Kenunia

Like NIAIMRA, DAVRA also suffers froni a number of shortcomiings tihat limit its viability as a comilpiete
theory of child language acquisition. Accordingly, I have constructed a third system. lI-ENNt'IA that
att.ernpt~s to address some of these shortcomings.

4.3.1 Overview of Kenunia

The following summarizes the limitations in DAVRA addressed by KENUNIA.

" DAVRA'S syntactic theory is specified by setting two binary-valued parameters: head-initial/final
and SPE(-initial/final. Thus except for lexical differences, DAVRA can support only four distinct
language types. In KENt:NIA. the analog of the head-initial/final and SPE( -initial/final parameters
vary on a category by category basis. increasing the possible parametric diversity of languages to •e
learned. Furthermore, since IKENUNIA supports base adjunction. additional parameters specify the
adjunction order, again on a category by category basis. Tile KENtNIA ,yntactic theory is specified
by setting sixteen binary-valued parameters. supporting (i5.536 distinct possible languages types
to be learned, independent of lexical variation.

" The syntactic theory incorporated into I)AVRA is little more than X theory. RENUNIA instead
incorporates a much more substantial linguistic theory including X theory, movement. 0-theory.
case theory. and the empty category principle (E('P). While the variant of X theory iucorporated
into DAVRA supports only head-coiilplenment structures over the categories N. V. P. ail(l I. tlie
variant incorporated into KENUNIA supports both head-counplenient sit iclures. as well as free
base adjiunction, over the categories N. V, P1). D. 1. and ('. Furthermore, tihe syntactic theory used
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I)V IENVNI.X incorjaorat es a inumiber of' current linguistiW not ioii. such as \l-uinternal iii-ject,. I b,

DI) Phypot hesis, and V-t o-l I moven iet.i

*DAV RA supports oil\i a weak not ion ofl etipt y cat egorv. I )Ax\ RA all ows. it I eriitIitita nod to I ko )(t-

overt so long ats it does not cointribute anxV Semanti Ictonlt tol I 0 li reslt iliUl it lttrailc. KN.U.1 N IA

extenids ti s capacit% to p~rovidle Ibr both niioi-overt words,. as well ats Iilovtintnt antd Its ensuinig

traces. KFN [NIA incorporates the general unot ion (A' anl empt , t'rmnnal. aI terminiial wit III no o~ trt
phonological con tent. K"FN''NI A support, twot VPes of einpt\ vterminaks: frace, %\hlic are b ound b\

anl antecedent arising fronti movement.t and zeros, words or miorphem'iies which are- not plionologicaINv
overt but nionet heless cont ain the samet full range of linguistic jifilormjat ion as ot her ove-rt tleiieiit s
Thus unlike in DAVRA. inl KEN UNIA a language has anl jnveiit orv of zeros, each of'which has a specific
sytitact ic cat egory and contributes specific semn aitic contentit to ut teranices inI which it appears. A
severe problem facing any\ t heory of language acquisit ion is H ie iieed to explain htow% chiildren Cani
learn the inventor\ of noti-overt eleiment s and their linguistit' featutres. F-urthewrmore. one, nitist altso

explain how childreni learii iii the presenice of miovemienit. This c learly holds for tiincont roversial
forms of movement such as Wli-inovenient. It is exacerbated by the current t rend iii linguistic.s to
post ulate radical forms of miovement and numierous noti-overt elemienits. \Tl-Iiiteruial subjects and
\'-to-l niovemtett are two examples of such radical formis of movement. while thle Larsoi/ Peset sky
analysis of the dit ransit ive is anl examiple that requires the child to learin nlo-overt prelposit lolis
that bear specific lexical featutres. While K'EN UNIA canniot currently handle all such phenomiena.
the long-term objective is to tackle this problem head onl and( develop a thliory t hat canl explain

language learninig in the presence of' movement and non-overt eleimenits.

*DAVRA. like MAINMRA, represents wordl and] utterance meanings usinig Jackendovian coniceptunal
.structures. The semanltic theory uised by MNtAtRA and DAVR.A relates the meanitig of anl utteranice
to the meanings of its constituent words Via a linking rule based oii suibst it ution. Part 11 of
this thesis will dliscuss mnan\ of the shortcomings of both the .1ackeiidovian representtat ion and( its
associated linking rule. Basling a theiory of laniguage acquisit ion onl such a quest ioniable seinant ic
theory renders the language acquiisit ion theiory suspect. The uilt iimate goal of t his research is to

develop a compilrehenisive theory of' language acquisit ionutsiing the semiant ic represent at ion to be
discussed iii part It of this thesis as its basis. Since that representation is itot yeIt ftilhy- formutlated.
KENUNIA adopts a temporary stopgap measure. It uses 9-theory as its semanttic represent at ion.
The rationale behind this MOve is simlple. Basin,,, the theiory of language acqtiisit ion onl the weakest
possible. lea~st controversial. semantic theory canl yield a more robust theory of language acqu isit ion.
Trhe fewer assumptions one, makes about the semantic theory. the less likely thie possibility t hat
thle t heory need be ret ractedl as a result of falsifyinig sotme setnant ic assuiiipt ion.

MAINTRA and DAVRA represented word and utterance meanings as conceptual structure fragnients.
The meaning of John might be person1 l. while thie meaning of walkfd might be GO( ~.r[path 1). The linik-
ing rule would combine these two fragments to yield (GO(persoia1 [Path ]) as the meaning of John tvalk d.
KENUNIA instead represents wordl meanings via two) comp~onenits: a referent amid a 0-±griti. The referenit
of a word is simply a token dlenoting lie object t~o which that word refers. For example. the reforemit of'
the word John might be persolti while the referent of the word clip might be object,. W~ords such a.s
th., walk, and] slidt which dto not refer to antything are assigned -L as their referenit.

A 0-grid denotes the argument taking properties of a word. Coniceptually. a wordl assigns a distinct 0-
role to each of its arguments. The 0-grid specifies which 0-role is assigned to which argument. Formally.
a 0-grid conisist,, of a set of 0-assignments. each 0-assignment being a 0-role paired withI a conilenieeit

in.rdex. anl integer denoting the argument to which that O-role is to be assiguied. Words suich as tht-.
.Johni and cup which do not take any arguments would have anl eimipty 0-grid. Ati initranisit ive verb

such as wralk, would have 1frnENME :I)} as its 0-grid. This indicates t hat wralk assigns oine 0-role. namielv,
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THEME. to its external argument. More formally, thie notat ion rLHENIE I specifies that tilt- cOmll)lemlienlt
of the bar-level "I" projection of the termlinal node associated with tilte word walk is assigned ht- 0-
role THF:EN. Likewise. tlie 0-grid for a transil ive verb such as .slhd( might hbe { TmIE-,i: 0, A.-. : AGI
indicating that the 0-role 1THEME is assigned to thle internal argument while AGE-NI is assignled to thel
external argument. Aiu internal argument! is thel complemenit of a bar-level "'0" projection while all
external argument is the conmplemient of a bar-level "'" projection. Using comipleimeut indice's to deiott,
arginneut positions. instead of the terins -internal' and 'external', keeps 0-theory independe'lt of li,
decision as to the number of bar-levels used by X theory.

The referent and 0-grid components of a word are orthogonal. A given word may have just a referntt.
just a 0-grid, both. or neither. Typically however, all words other than nouns will have I as their referent.
and only verbs and prepositions will have non-empty 0-grids.

KENUNIA represents utterance meanings via a O-tnap that is itself a set of O-mappings. A 0-mapping
is similar to a 0-assignment excel t that a referent replaces the complement index. Thus the Iieaning
of John walktd would be represerited in KENUNIA as the 0-map {THEME :person1 }. This 0-map is
derived from the 0-grid for walkcd and the referent of John by a process called 0-marking. hItuitively.
the 0-marking rule combines {THEME : 1}, the 0-grid for walk(d. with person1 , the referent for John to
form the 0-map {TtENIE : lperson1 } for John walfkd. A more formal specification of this process will be
given later. In KENUNIA. 0-marking plays the role previously played by the linking rul, used in NAI-IR.A
and DAVRA. Thus iti KENUNIA, the corpus consists of utterances paired with a 0-map instead of a set
of meaning expressions. Furthermore. the lexicon maps words to their referents and 0-grids instead of
meaning expression fragments.

Figure 4.8 illustrates a corpus that has been presented as input t.o KENUNIA. This corpus contains
the same nine utterances that were presented to MAINIRA and DAVRA except that 0-maps replace tilie
meaning expressions as the non-linguistic input paired with each input tit terance. Each tit terance in Ithe
corpus is paired with a single 0-map. Like the corpora presented to both MAIMRA and DA'RA. this
corpus also exhibits referential uncertainty. The mechanism used by KENUNIA to represent referential
uncertainty differs from that used by MAIMRA and DAVRA. In MAIMRA and DAVRA. each utterance was
paired with a Setr of meaning expressions, only one of which constituted the actual meaning. Thei same
uncertainty mechanism could have been incorporated into KENUNIA. This would have entailed pairing
each utterance with a set of 0-maps. only one of which corresponded to the 0-map generated by 0-theory
for the utterance. KENUNIA however. supports uncertainty in pairing linguistic with non-linguistic input
by an even more general mechanism. KENUNIA requires only that the actual 0-map produced by applying
0-theory to the input utterance be a subset of the 0-map given as the non-linguistic input paired with
that utterance. The referential uncertainty implied by a set of distinct 0-maps can be emulated by this
more general mechanism by simply forming a single 0-map that is the union of the individual distiict
9-maps.

4.3.2 Linguistic Theory Incorporated in Kenunia

The linguistic theory incorporated into KENUNIA call be specified more precisely via the following prin-
ciples.

1. X theory

tree structure: The linguistic input. to KENUNIA consists of a sequence of utterances. each utter-
ance being a string of words. KENUNIA associates a set of nodes with each utterance. Nodes
are organized in a parent-child relationship. Each node except for one has a distinguished
node called its parent. The one node without a parent is called the root. Each node also has
a (possibly empty) ordered set of nodes called its children. A node with no children is called
terminal. Every node is associated with a (possibly enlpty) substring of the input uitlerance.
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{AGENT: person1 . THEME: person1 )
John rolh d.

{AGENT: persou., THEME: person.,)
Alary rollcd.

{AGENT : person 3 . THEME : person13 )

Bill roll d.
{THEME : object 1 }

Thl cup rolled.
{AGENT : person 3, THEME : person3 , GOAL : person.,)

Bill ran to Mary.
{AGENT : person3 , THEME : persons3 , SOURCE : person1 I}

Bill ran from John.
{AGENT person3 , THEME : person 3. GOAL : objectI}

Bill ran to thf cup.
{THEME object 1 , SOURCE : person1 . GOAL :person.,)

The cup slid froin John to Mary.
{AGENT : person,, PATIENT : person,, GOAL : person,_)

John faced Alary.

Figure 4.8: A sample corpus presented t.o Kenunia

Nodes associated with empty substrings are called empty1v.` The substrings associated with
nodes obey the following two constraints. First, the substring associated with a non-termninal

node must equal the concatenation of the substrings of its children, taken in order. Second,
the substring associated with the root, must equal the input utterance.

binary branching: Each node has at, most two children.

categories: Each node is labeled with a category, which is one of the symbols N, V, P, D, 1. or C.
KENUNIA is written so that the set, of possible categories is a parameter of the linguistic theory.
Currently, the value of this parameter is given as input to KENUNIA-it is not acquired. Future
work may explore the feasibility of acquiring the set of possible category labels. i.e. treating

category labels as integers and trying sets of ever increasing cardinality until one is found
that is consistent with the input.

bar-level: Each node is labeled with a bar-level, an integer between 0 and Al. A node labeled
with bar-level 0 is called a minimal node, while a node labeled with bar-level II is called a
maximal node. Here again, KENUNIA is written so that Al is a parameter of the linguistic
theory. Currently however, the value of Al is fixed at 2 and not acquired. As for categories,

future work may explore the feasibility of acquiring the value for M, instead of taking it as a
fixed input, value.

head-complement and adjunction structures: Each node is either a head-complement struc-

ture or an adjunction structure. In head-complement structures, one distinguished child is
designated the head while the remaining children (if any) are the complement.s of the head. 13

"
2

Empty terminal nodes are typically called empty categories in linguistic parlance. This introduces an ambiguity in
the term category, sometimes referring to a label for a node, for instance N. V. or P. and sometimes referring to a node
bearing a particular label. In this formulation. I use the distinct terms category and node for these two different uses and

thus what are typically called empty categories are here referred to as empty (terminal) nodes.

"
3

The terminology used here differs somewhat from current linguistic parlance. According to my use of the term head.
the head of an X

2
node is its X 1

child, while in standard usage it is the X
0

child of the X1 node. Furthermore. I use
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The category of a head-comiplemient structutre iliust be the sailie a~s the category of it, head.
while thle lbar-level of a head-comnplemtent st ructuore mutst be one( greater than thle liar-level of

its hlead. For anl ad'junction structure. 01We (list inguished child is dt-sigiiat ed thle head while tint

remiaining child reni are the adjuncts of the hleadl. Ani adj unction st ructuore itiust have at least

one ad junct. Both the category and bar-level of' anl adjunnct ioll s t rtic tre niutst lbe I lit salin,
as its head. ( omiplenteuts, must he mnaxiimal nmodes. while adjunMcts liltist be eit her utiniinial

or inaxiutal niodes. This p)rinipclle, coiiibined withI the principle of biniary branichin g. imiplies

that all non-termninal nodes have one of the following five coldfigtirat lonls.

1 X1 X' I XY /tfj

(a) (h) (c (d)(e

phrase order parameters: For each category X, atid each 0i < i < Ml. the language sets thle
lbitarv-valued lparaineter [X' itiitial/finall to either initial or final. lin laniguages which

set [X' initial], a hetad labeled V' must be the first child of a head-comiplemient structulre, while

lin languages which set [X' final]. it miust he the last child. Furt hermnore, for each cat egorv X

and each 0I < i < Al the language sets the binary-valued paramieter [adjoin V' left /riglit]
to either left or right. lIn languages which set [adjoin V' right], a head labeled V' initst

ie the first child of anl adjunction structure, while iii languages which set [adjoin X' left]. it

muist be the last child."4 Note that head-conlpleinent and adjunctioni order are spiecified onl a
per category and per bar-level basis.' 5

C-selection: Alny latnguage specifies a finiite set C of pairs of tile formn (X. Y) where X aii( Y~ are

categories. If (X. Y) C- C we say that X c-selects Y. If X c-selects Y then, two rest rictions apply.
First., any node labeled X"1 must have a sinigle coniplemieit. labeled Y. Thlis rest rict ion is called

c-selection. Second, any node labeled V%' must be thle comtplemient of a iiode labeled X('. This

restriction is called inverse c-selection. KENUNIA is writtenl so that tile set C of c-select iOil

relations is a lparamieter of the linguistic theory. CIurrently, the value of this Ilaralileter is givenl

as input t~o \ENtJNtA-it is not acqiuiredI. All of the work described in this chapter asstlnles

a specific set. C of c-selections. namiely that D c-select~s N."1 I c-selects V. and C c-selects I.
Future work mnay explore mnore basic princip~les which govern the acqulisit~ionl of C.

terminals: Termninals miust be either mninitijal or miaxiimal nodes.

roots: Root nodes miust be mnaximial.

2. Move-n
l(ENUNIA does no0t. construct anl exp~licit D-structure represent~ationi and thus does not represent
mnovemient as a correspondence between such a representation and S'-structure. Instead, IKENU.NIA

operates in a fashioni slimilar to Foig~s (1991) p~arser and constructs only anl S-structure represen-

tation that is annotated with co-indexing relations between antecedent~s and~ their bound1( traces.

KENUTNIA associates a set Ml of miovement relations with the set of nodes constructed for each iii-

put. utterance. Each miovemient, relation is an ordered pair of nodes. If Ml cont ains thet( pair (o. .3).

a generalization of the ternm complement to refer to the siblings of heads bearing any bar-tevel. Standard usage applies
the term complement only to siblings of X 0 heads, and instead applies the term SPEC' to siblings of V

1 heads. N1y

non-standard use of tervniinology affords greater uniformity in stating the theory described here.
"14Note that this formulation of paramneter settings is independent of the binary branching principle.
"1 With six categories and .%I = 2 there are nominally 30 bi nar~y- valuted parameters. Additionat tprinciples and restrictions

reduce this to 1"i non-degeneraie parameters.
6'6 This is in accord with the DP hypothesis.
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we say that 3 is the antecedent of o and that o is hound by .3.17 Movenient relations are subject
to the following constraints.

(a) Bound nodes must be empty terminals. Bound enmpty terminals are called traces.

(b) Nodes can bind only one trace.1

(c) Traces must have only one antecedent.

(d) Antecedents must be either minimal or maximal nodes. This Iineanii that only minimnal and
maximal nodes move.

(e) The head of an adjunction structure cannot be a trace. This means that a base generated
adjunction structure cannot move without its adjuncts.

(f) The head of an adjunction structure cannot be an antecedent. This means that no node can
adjoin to a moved node.

(g) Nodes cannot bind themselves. This is part of what is known as the i-within-i constraint.

(h) Antecedents must have the same category and bar-level as their bound traces.

(i) Antecedents must rn-command their bound traces. This is a variant of ECP, the empty
category principle.

(j) Antecedents and their bound traces cannot be siblings.

(k) Antecedents must not, be 0-marked. The concept of 0-marking will be defined below. This
means that a node cannot move to a 0-marked (argument) position.

3. 0-theory
KENUNIA incorporates the following variant, of 0-theory. As discussed previously, each word has
an associated referent and 0-grid. A 0-marking rule is used to construct a 0-map corresponding
to an entire utterance from the referents and 0-grids associated with its constituent words. More
precisely, a lexicon maps (possibly empty) strings of words to their associated referent and 0-grid.
Each terminal is associated with some (possibly empty) substring of the input utterance. Every
terminal, except. for traces, is assigned both a referent and a 0-grid, in addition to a category
and bar-level. This includes both overt as well as empty terminals. The referent and 0-grid for
a terminal is taken from the lexical entry for the (possibly empty) substring of words associated
with that. terminal.

Intuitively, the 0-marking rule combines a 0-assignment, such as THEME : 1, with a referent such
as person1 to form the 0-mapping THEME : person1 . The 0-map for an utterance will contain a
number of such 0-mappings, one for each 0-assignment in the 0-grid of each word in the utterance.
A word or node with a non-empty 0-grid is called a 9-assigner. 0-theory stipulates that each 0-
assigner must discharge its 0-grid. Discharging a 0-grid involves discharging each of its constituent
0-assignments. Discharging a 0-assignment (i.e. assigning a 0-role) is done by 9-marking the ap-
propriate complement of the 0-assigner involved. This involves pairing the referent of a particular
word in that. complement with the 0-role specified by that 0-assignment. and adding the resulting
0-mapping to the 0-map for the utterance. The complement of the 0-assigner thus 0-marked is
called a 9-recipient. 0-recipients are said to receive the given 0-role.

The 0-marking rule incorporates the following constraints.

-,I use the terms antecedent and bound here is a much more restricted way than is common in the linguistic literature.
Kenuniadoes not incorporate any binding theory. The terms are used solely to denote the relation between a moved node
and a trace created by that movement.

"I Kenuniacurrently supports only one type of trace. Kenuniadoes not currently support parasitic gaps, PRO, pure
variables, or operator-variable structures.
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(a) 0-marking is performed at D-structure. This standard assumption ha.s two implications.
First, 9-assigners which have moved must discharge their O-grids from their position at D-
structure.l' In other words, antecedents don't discharge their O-grids in situ. Instead they
discharge their 0-grids from the location of their bound traces. Second. since O-recipients
receive their 9-role in their D-structure position, traces which are 9-marked pass oil that
O-role to their antecedent.

(b) 0-assigners must discharge their 9-grids. In other words, if a node assigns a 9-role to its
internal argument, for example. then there must he an internal argument to receive that
0-role.

(c) Complements of nodes labeled with non-functional categories must be 0-marked. This con-
straint is commo!nly called the 0-criterion. In KIENUNIA. functional categories are taken to be
those which c-select, namely D, I. and C.

(d) The 9-map constructed for an utterance must contain at least one 0-mapping.

The 0-marking rule can be stated more formally as follows. The ultimate antecedent of a node ,i
is

0 a itself if o is not a trace or

* the ultimate antecedent of the antecedent of t if a is a trace.

The ultimate referent of a node o is

"* the ultimat~e referent of the antecedent of o if ( is a trace.

"* the ultimate referent, of the complement. of o if a is a head-complemnent structure and the
cat,'gory of a is a c-selecting category,

"* the ultimate referent. of the head of a if a is either an adjunction structure or a head-
complement. structure where the category of a is not a c-selecting category, or

"* the referent, of a if a is a terminal and not a trace.

Every non-antecedent node a whose ultimate antecedent is a terminal must dischargef the 9-grid
associated with that ultimate antecedent. If the 0-grid for the ultimate antecedent of o contains
the 0-assignment p : i then find the node 3 such that

* i3 dominates a,

* the bar-level of 3 is i,

* 3 is not the head of an adjunction structure, and

* no node which dominates a and is dominated by 13 is a complement or adjunct.

and form the 0-mapping p : it where p is the ultimat~e referent. of the complement of 3.

4. Case theory
KENUNIA incorporates a variant of the case filter which states that overt maximal D nodes can
only appear in one of three places: the complement of an 11 node, the complemeiit of a P" node

and the complement of a V0 node if the V0 node assigns a 9-role to its external argument. This
latter restriction is a formulation of Burzio's generalization. The above formulation of the case
filter assumes that M = 2.

"gAs stated previously, Kenuniadoes not create an explicit D-structure representation. Kentilni•,s implementation

of 0-marking, however, operates as if such a representation existed by utilizing movement relations in the S-structure
representation to guide the 0-marking process.
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5. Monosemy constraint
A lexicon maps word strings to a unique category. bar-level. referent, and O-grid. The category.
bar-level, referent, and 0-grid of terminal nodes (except for traces) must be the those projected by
the lexicon for the substring associated with the terminal node.

4.3.3 Search Strategy

KENUNIA uses a variant of the weaker, revised search strategy used by DAVRA. In this strat-g/y, all
language-specific knowledge is maintained as part of a single language model. This language model
contains information both about the lexicon as well as syntactic parameter settings. The language
model consists of a set of propositions. There are six types of proposition. illustrated by the following
examples.

1. category(slidc) = V

"2. bar-level(slidf) = 0

3. referent(slid() = .1_

4. 0-grid(slide) = {THEME : 1}

5. [10 initial]

6. [adjoin 10 left.]

The first. four propositions indicate components of the lexical entry for the word slid(. Note that the
category, bar-level, referent, and 0-grid for a word are represented as four independent propositions in
the language model. The last, two propositions indicate parameter settings: in this case the statement
that the language is head-initial for inflection nodes and that adjuncts adjoin to the left of I" nodes.

At. all times. KENUNIA maintains a single set of such propositions that represent the current cumu-
lative hypothesis about. the language being learned. The eventual goal is for the initial language model
to consist of the empty set of propositions and to have KENUNIA acquire all six types of propositions
representing both parameter settings and the syntactic and semantic properties of words. The current
implementation. however, learns only parameter settings and syntactic categories. Thus, KENUNIA is
provided with an initial language model containing propositions detailing the referents and 0-grids for
all words, both overt and empty. that appear in the corpus. KENUNIA then extends this language
model with propositions detailing the categories and bar-levels of those words, as well as the syntactic
parameter settings.

KENUNIA extends the language model by processing the corpus on an utterance by utterance basis.
Each utterance is processed and then discarded. No information, except, for the cumulative language
model, is retained after processing an input utterance, other than a set of nogoods to be described
shortly. When processing an input utterance, KENUNIA simply tries to find a superset of the current
language model that allows the input utterance to be parsed. This superset must be consistent in that
it cannot assign a parameter two different settings, nor can it assign a word two different categories.
bar-levels, referents, or 0-grids. This latter restriction is an embodiment of the monosemy constraint.
If KENUNIA is successful in finding a consistent superset of the language model capable of parsing the
input utterance, this superset is adopted as the new language model, and processing continues with the
next utterance in the corpus.

So far. the strategy employed by KENUNIA is identical to the revised strategy used by DAVRA. The
strategies diverge however, when KENUNIA is unable to find a consistent extension of the language model.
In this situation, DAVRA would compute a minimal nogood. A nogood is a subset of the current language
model that is inconsistent, i.e. one that cannot be extended to parse the current input. A nogood is
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nuinial if it has no proper subset which is a nogood. It turns out that the process used by l)AVRA for
computing a minimal nogood is Intractable. DA\'RA repeatedly tries to remove individual propositions
from the nogood. one by one, testing the resulting set for consistency. Although only a linear niumiber
of such consistency tests are performed. they are per ornied on successively smaller sets of propositions.-.
The smaller the language model, the imore freedom the parser has in miaking choices to tr% to extend
that language model to see if it is consistent with the current input. Experience' has showi that a
parser can work efficiently with either an enipty language model. or one which is almost fully ,peitied.
In the former case, an empty language model places little restriction on fiiding a consistent extension
and thus one will almost always be found. In the latter case, a highly constrained language iiodel will
focus the search and yield very few intermediate analyses. A small but non-enipty language model.
however, produces a larger number of analyses that must be checked for consistency. For this reason.
the strategy used by DAVRA for computing minimal nogoods turns out to be intractable iii practice.
Therefore, KENUNIA uses nogoods that are iot necessarily minimal. When the current language model
cannot be extended to parse the input utterance. KENUNIA forms a nogood that contains the following
propositions.

"* all of the syntactic parameters

"* all category and bar-level propositions for words appearing in the current input utterance

"* all category and bar-level propositions for zeros in the current language model

This nogood. while not minimal, is nonetheless a subset of the current language model anid is easy to
compute.

KENUNIA uses nogoods thus constructed in two ways. First. the nogood is saved to prevent repeatedlx
hypothesizing the same language model. Whenever KENUNIA attempts to extend a language model. tI ie
extension is checked to ensure that it is not a superset of some previously constructed nogood. Extensions
that are supersets of some nogood are discarded since they are inconsistent with prior input. Note that
KENUNIA does not retain the prior input, itself to perform this check of consistency. Omay thme nogood.
the inconsistent language model, is retained to prevent looping. Second. one proposition is selected
arbitrarily from the newly constructed nogood. This proposition is removed fromii the current language
model and a new attempt is made to extend the resulting language model to parse the current input
utterance.

4.3.4 The Parser

A key step of the above learning strategy is determining whet her the current language model is consistent
with the next, input utterance. This requires deternmining whether the language model, either as it stands.
or possibly extended, can parse the input utterance. KENUNIA uses a parser whose architecture is similar
to that described by Fong. The parser consists of a cascade of modules. The first module generates
potential S-structure representations corresponding to the input utterance. Each subsequent module
can either filter out structures which violate some principle, or can adorn a structure with additional
information such as 0-markings or movement relations. Since such augmentation of structure can be
nondeterministic, the number of structures passed from module to module can both grow as a result
of structure augmentation, and shrink as a result of filtering. The particular cascade of modules used
in KENUNIA is illustrated in figure 4.9. Note that X theory must come first since it is the initial
generator. 9-theory must come after Move-o since 0-marking is performed at. D-structure. 0-theory uses
the movement relations produced by Move-o to reconstruct the D-structure representation. The case
filter depends on Burzio's generalization which requires determining the 0-grid of a head. Since a head
trace inherits its 0-grid from its antecedent, the case filter must come after Move-o as well. Since ihe
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valid structures

Figure 4.9: The cascade of modules used in Ken unii parser.

case filter only rejects structures and doesiit nondeterministically adorn them, it is more efficient to
place it, before 0-theory. Thus the cascade order for the parsing modules is fixed.

The variant of X theory incorporated into KENUNIA generates infinitely many potential X structures
corresponding to any given input string. This is because such X structures can repeatedly cascade empty
terminals. KENUNIA might therefore never terminate trying to parse an utterance which could not be
parsed with a given language model. Solving this problem in general requires induction. Lacking the
ability to inductively prove that no element of such an infinite set of S-structures meets the subsequent
constraints, or some meta-level knowledge which would bound the size of tile S-structure representation
by a known function of the length of the underlying utterance, KENUNIA instead sets a limit k on the
number of empty terminals that can be included in a generated S-structure. This single limit k applies
collectively to both traces and zeros. The implementation allows the limit k to be adjusted. Preliminary
experimentation with different, values for k indicate that performance degrades severely when k" > 3.
All results reported in this chapter, therefore assume that k = 3. KENUNIA uses an iterative deepening
strategy when searching for S-structures which meet the constraints, first enutneratiing those st ruct tires
which do not, contain any empty terminals, then those which contain one empty terminal. and so forth.
terminating after enumerating structures which contain k empty terminals. Thus while several alternate
analyses for an utterance may meet the constraints imposed by the linguistic theory. KENUNIA always
adopts the analysis with the minimal number of empty terminals. It is this analysis which contributes
the necessary extensions to the language model in the search process described previously. There may
however, be several alternate minimal analyses. In this case, an arbitrary one is chosen to extend the
language model.

The X theory module operates essentially as a context-free parser. KENUNIA generates a context-free
grammar corresponding to an instantiation of the aforementioned variant of X theory with the parameter
settings in the current language model. For example. the grammar would contain the rule

D' - Do Nm1

if the language model contained the parameter [Do initial]. 20 Alternatively, it would contain the rule

D' - NM Do

if the language model contained the parameter [Do final]. Given such a context-free grammar. the
X theory module uses a variant, of the CKY algorithm to generate S-structures. The particular memo-
ization strategy used allows each variant, structure to be retrievwd in constant time once the well-formned
substring table has been constructed in 0(n 3 ) time.

One feature which distinguishes this parser from the parser described by Fong is that it can operat.e
with an incomplete language model. The learning algorithm in which it is embedded must determine
whether a given language model can be extended to parse a given utterance, and if so, what the necessary
extension is. If, for example, the language model does not, set. either the [Do initial] or the [D(' final]
parameter, then the grammar can simply contain both of the above rules. Since however, any given
language must set the parameter one way or the other, a hypothetical analysis for aii utterance could
never be correct if one subphrase was generated by one setting, and another by the opposite setting.

2 0Kenuniadoesn't actually generate a context-free grammar: rather the parser directly uses the parameter settings.
The operation of the parser is most easily explained, however, as if it utilized an intermediate grammar.
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This requires that the X theory module check the output of the ('KY parser to guarantee that each
structure produced is generated by a consistent set of parameter settings. 1he necessary extensionl-

to the language model call be recovered by examiing a structure output by the final module in the
cascade. The language model might also contain incomplete word-to-category and word-to-bar-level
mappings. These are handled by treating such words as lexically ambiguous in the (KY algorithm.
Here again, since KENUNIA Must ultimately enforce the nionosemy constraint, a hypothetical analysi.s
for an utterance could never he correct if some word appeared miore than oice in that Ltoerance with
different category or bar-level assignments. The X theory module imnust check the structures produced
for such inconsistenc' s as well.

The cascaded parser architecture has the property that the X theory module produces numerous
structures that are ultimately filtered out by later modules in the cascade. Since asymptotically. the
processing time is proportional to the numnber of intermediate structures generated. it is useful to fold
as much of the constraint imposed by the later modules into the ('KY-based structure generator. There
is a limit to how much call be done along these lines however. Much of the constraint offered by the
latter modules depends on non-local structural information. By its very nature. a context-free parser
can enforce only local constraints on the structures it generates. There are however, two components
of 9-theory which are essentially local and thus call he folded into the context-free structure generator.
These are the 0-criterion and the requirement that all nodes discharge their 9-grid. Coupled with the
c-selection requirements, these two components can be reformulated as the following pair of constraints.
A node XV must. have a complement if both i = 0 and X c-selects, or if the 9-grid of the ultimate
head of the node contains a 0-assignment with complement index i. Likewise. a node X" must not
have a complement if the 9-grid of the ult.imate head of the node does not contain a 0-assignment with
complement index i and X does not c-select. These constraints cali be encoded by adding features ±0,
to the categories X' in the context-free grammar. For example, the grammar would contain the rules

V' [+Oo1 -\ ',[+O 0 ] DAUV1 [-o9,] - \: [-o]

but not. the rules

V' [-00] - V0[-0 0 ] D"
\N"[+0] - v"[+001.

Ground context-free rules can be generated by enumerating instances of such rule schemas. for all possible
unspecified feature assignments, subject. to the constraint that. the feature assignments of a node must
match those of its head.

So far, only the above constraints have been folded into the context-free CKY-based structure gener-
ator. There would be substantial algorithmic benefit. if all of the remaining modules could be folded in
as well. If this could be accomplished then there would never be any need to enumerate the structures
generated by the context-free grammar, since the parser as a whole is used only as a recognizer. to
determine whether an utterance is consistent with a given language model. Such recognition could be
performed in polynomial time, irrespective of whether the language model was complete or incomplete,
notwithstanding the need for consistency checks on the generated structures as discussed previously. This
would allow efficient computation of minimal nogoods since with a CKY-based recognizer there would
be no performance penalty for smaller language models over larger ones. Even if some per-structure
filtering was required, as is the case for consistency checks, folding more into the generator, enabling it
to producing fewer structures which violate subsequent filters, makes the process of computing smaller
nogoods more feasible.
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4.3.5 Additional Restrictions

Even after folding parts of 0-theory into the context-free S-structure generator, tfhe rstsulling generator
can still produce a large number of intermediate structures. A manageable numbiher of structures is
produced when the language model is complete. In such cases. the linguistic theory overgenerates oilm
slightly, with subsequent modules filtering out practically all of the structures generated. Smlhler lan-
guage models however, generate an astronomical numiber of interniediate structures. While thie linguistic'
theory may, in principle, be able to filter out all such intermediate structures, it has never succeeded ill
doing so in practice. Thus for pragmatic reasons, some additional restrictions are adopted that further
constrain the structures generated. Both X theory and Move-o are restricted. Most of the restrictions
on X theory apply to adjunction. These include the following.

1. The bar-level of the head of an adjunction structure must be the sante as the bar-level of its
adjunct. In other words, a node can adjoin only to a node of the same bar-level.

2. Minimal nodes that are the head of an adjunction structure must bear the category label 1. In
other words, the only minimal node that can be adjoined to is 1V.

3. Minimal adjunct nodes must bear the category label V. In other words, the only minimal node,
that. can be an adjunct is V).

4. Maximal nodes that are the head of an adjunction structure must be labeled either N or V. In
other words, the only maximal nodes that can be adjoined to are NP and VP.

5. Maximal adjunct nodes nmst be labeled either P or C. It other words, the only maximal nodes
that can be adjuncts are PP and CP.

Two further restrictions apply to X theory that do not relate to adjunction.

1. Complements of nodes bearing bar-level 1 must bear the category label D. In other words, specifiers
must be DPs.

2. The root must bear the category label C. In other words, utterances must be CPs and not other
maximal nodes such as DPs or PPs.

3. Terminals must be either empty or singleton word strings. KENUNIA cannot currently handle
idioms, or terminals that correspond to more that one word.

All of these restrictions are folded into the context-free grammar used by the X structure generator. With
these restrictions, the number of intermediate structures generated is far more manageable. Additionally.
several restrictions are imposed on Move-o.

1. Minimal antecedents must bear the category label V. In other words, the only minimal node that
can move is V).

2. Maximal antecedents must not bear a c-selected category label. In other words. c-selected nodes
such as NP, VP, and IP don't move.

Fong's parser implicitly adopts these very same restrictions, with the exception that adjunction to IP
is allowed. 2' None of these restrictions seem very principled. Furthermore, some of them appear to be
downright, wrong. They were chosen since they are the tightest such restrictions which still allow the
corpus in figure 4.8 to be parsed. The need for these restrictions is a severe weak link in the current
theory. Incorporating these restrictions was dictated by pragmatic expedience. the advantage of getting
the system to work at. all. before getting it. to work cleanly. Replacing these ad hoc restrictions with
more principled ones remains a prime area for future work.

21 These restrictions only hold for that portion of Fong's parser which is comparable to Kenunia In Fong's parser these

restrictions do hold of LF movement, adjectives. adverbs, and I-lowering.
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cup: object,{}
-td: 1{}
joh n: person1 {}
slide: _ITHEME :11
that: I{}
: ±{1

facC 1{PATIENT : 1.GOAL I0}
from: ±{SOURCE 01
bill: person 3{ }
the: 0{}
m ary: person, {
to: I{(GOAL : 0}

run: 1{THEME : 1}

roll: I{THEME :11

Figure 4.10: Kenuniais given these mappings from words and zeros to their referents and 0-grids
as prior language-specific knowledge before processing the corpus from figure 4.8.

4.3.6 Kenunia in Operation

Appendix B illustrates KENUNIA'S application of the above strategy in processing the corpus from
figure 4.8. For this run, KENUNIA was also given an initial lexicon mapping the words in the corpus,
as well as the inventory of zeros, to their referents and 0-grids. This initial lexicon is illustrated in
figure 4.10. The initial lexicon did not include any category or bar-level information, nor was KENUNIA
given any syntactic parameter settings.

Like the revised DAVRA strategy, KENUNIA processes a corpus repeatedly to make ul) for the lack
of a larger corpus. KENUNIA makes two passes over the corpus from figure 4.8 before converging on a
language model that. survives the third pass without need for revision.

This process can be summarized as follows. 22 Starting with an empty language model. KENUNIA
succeeds in processing the utterance John rolled forming the incorrect though nonetheless valid structure
illustrated on page 235 in appendix B. In doing so, KENUNIA assumes that John is a DIP, roll is an I".
the -ed morpheme is a VP, and the zero lexeme is a Co. KENUNIA also assumes that the language is
1° initial, I1 final, and Co final. KENUNIA continues processing further input utterances through page 242.
successfully extending the language model for each utterance. Though many of the assumptions made
are incorrect, they are consistent with both the linguistic theory and the portion of the corpus seen so
far. When processing the utterance John faced Mary, however. KENUNIA is not able to find a consistent
extension of the language model capable of parsing this utterance. This is illustrated on page 243. At
this point, no single proposition can be retracted from the language model to make it consistent with
the current utterance. It is possible however, to derive a consistent language model by retracting both
the assumption that the category of the -ed morpheme is V, as well as the assumption that its bar-level
is 2. After retracting these assumptions. KENUNIA is able to process this utterance by assuming that
-ed is an 1°. This analysis is illustrated on page 244. Note that in order to make this analysis. KENUNIA
had to posit, a structure that. included both V-to-I movement as well as subject raising from SPEC of V
to SPEC of I. Analysis of previous input did not include such movement. There is nothing magical
about, this transition. KENUNIA did not discover the concept of movement. The potential for movement

2 2 Note that in appendix B. the symbol 0 denotes a zero. t denotes a trace. X denotes an undetermined category. and

n denotes an undetermined bar-level.
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was latent all the time in tile linguistic theory with which she was iliately , endowed. Slh. sipln ly did
not have to invoke that potential until tile current utterance. for simpler analyses (it. ones withi fe'wer
enipty terminals) sufficed to explain the prior utterances of tlihe corpus.

After successfully processing the previous utterance withI tile revised language model. KENMANL.
begins processing the corpus again, since the corpus has been exhausted. KlENNIA now encouititrs

problems trying to process t~he utterance Ic-hn ,ollhd (page 245). This tihe however. a singhl ret ract ion
suffices to allow KENLUNIA to continue. She retracts the assumption that roll is labeled I. replacing it
with the assumption that it is labeled V (page 246). KENUNIA is then able to successfully parse a fexw
more utterances until she encounters the utterance Bill ran to Mary on page 250. This requires. her to
retract the assumption that run is labeled I and decide instead that run is labeled V (page 251 ). After
one more retraction, labeling slidt as V instead of I on pages 254 and 255. KENUNIA is able to tiake
one complete pass through the corpus without further revision, and thus converges on the lexicon and
parameter settings illustrated in figure 4.11. This language model is consistent with both the corpus,
and the linguistic theory. Processing the corpus to produce this language model requires about ain hour
of elapsed time on a Sun SPARCstation 2 TM computer.

As with the revised version of DAVRA, tile method described above can determine only that this is
one possible consistent language model, not that it is the only such language model. These methods
-,ct be extended to determine whether the solution is unique by using the same techniques that were

described for DAVRA. Furthermore, like the revised version of DAVRA, the rate of convergence of the
search strategy used by KENUNIA is dependent on the order in which utterances are process, d. Future
work will attenmpt to quantify the sensitivity of the search strategy to corpus ordering.

From figure 4.11 one can see that KENUNIA has arrived at the correct category and bar-level assign-
ments for all of the words in the corpus except cup. KENUNIA assigns cup the correct category N. but
incorrectly assigns it bar-level 2 instead of 0. One can easily see that the linguistic theory incorporated
into KENUNIA is not able to force a word to be labeled X" instead of X2 without seeing that word appear
with either a complement or specifier. Since cup has an empty 0-grid, it cannot take a complement or
specifier, for that would violate the 0-criterion. Thus KENUNIA could never uniquely (determine the
bar-level of nouns like cup. This is a shortcoming of the KENUNIA linguistic theory for which I do not
yet have a viable solution.

KENUNIA likewise makes a number of incorre,-t parameter setting decisions. She sets [V" filial]
and [Co final]. The former occurs because in the current corpus verbs always raise to adjoin to 1.23

There is thus no evidence in S-structure as to the original po-,ition of the verb. I do not yet have
a viable solution to this problem. The latter occurs because the corpus does not contain any overt
complementizers. With only zero complementizers, it is equally plausible to postulate that the zero
complementizer follows an utterance as it is to postulate that it precedes the utterance. Encountering
utterances with overt complementizers should remedy this problem.

KENUNIA is still very much work in progress. Three areas need further work. First, as mentioned
before, a number of ad hoc restrictions were adopted as part of the linguistic theory to reduce the
number of intermediate structures generated. KENUNIA does not work without such restrictions. A
goal of prime importance is replacing those restrictions with ones which are more soundly motivated. or
perhaps eliminating them entirely by using alternative parsing algorithms. Second. one of the original
goals behind KENUNiA was to extend DAVRA to account for learning in the presence of movement and
empty categories. This goal has been partially achieved since KENUNIA analyzes tile corpus in figure 4.I
in terms of V-to-I movement and raising of VP-internal subjects to SPEC' of IP. Nonetheless. this success
is partially gratuitous since such movement is theory-internal. An immediate goal is to exhibit learning in
the presence of less controversial forms of movement. such as XhIt- and NP-movement. Doing so would be
a major advance since no current theory can explain how children learn word meanings in the presence

2 3 The methods suggested in Lightfoot (1991) work only when the corpus contains some utterances with verbs in their
original position.
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Syntactic Parameters:

[\V0 final]

[N, final]
[P0 initial]
[D"' initial]

[10 initial]
[11 final]
[C0 final]
[adjoin V2 right]
[adjoin I1 left]

Lexicon:

cup: [N2] object,{}
-fd: [10] J_{}
John: [D-21 person1 { }
slide: [VO] -1{ THEME :11

that: [X1] 11{}

: [C"] l{}
fac(: [V0] 11{PATIENT 1, GOAL: 01
from: [PO] I_{SoI'CE 01
Bill: [D 2] persoU3 {}
th (: [D"] 1.1}

Mary: [D-] person,{1
to: [P"] I_{GOAL : 01

run: [VO] I{THENIE 1}

roll: [V0 ] If{THEME:1)

Figure 4.11: The parameter settings and lexicon derived by Kenuniafor the corpus in figure 4.8.

Kenuniaderived only the category and bar-level information in the lexicon. The referent and 0-grid

information was given to Kenuniaas prior language-specific input.
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Chapter 5

Conclusion

Part I of this thesis has addressed the question: What proc(durn night chddr(n •mploy to h arr their

nativu languagf without any accr.s to prJviously acquir(d languag(-.spctfic knou-hdg(? I have advo-
cat~ed cross-situational learning as a general framework for answering this question. In chapter 3. I have

demonstrated how cross-situational learning can be more powerful than trigger-based learniing and ('all

bootstrap from an empty language model. Furthermore. in chapter 4, 1 have demonstrated three iiiple-

mented systems based on this framework that are capable of acquiring very small ianguage fragment,.
MAIMRA learns both word-to-category and word-to-meaning mappings, for a very small fragment of

English, given prior access only to grammar. DAVRA learns both word-to-category and word-to-mneanillg

mappings, as well as the grammar, for very small fragments of both English and Japanese. KFNUtNIA
learns word-to-category mappings along with the grammar, for a very small fragment of English, given

prior access only to word-to-meaning mappings. Each of these systems learns from a corpus. conlaining
positive-only examples, pairing linguistic information with a representation of its imon-linguistic context.

In MAIMRA and DAVRA, both word and utterance meanings are represented as Jackendovian conceptual
structures. In KENUNIA, 0-theory replaces these conceptual structures as the framework for representing
semantic information. All three systems are capable of learning despite referential uncertainty in the
mapping of utterances to their associated meaning.

5.1 Related Work

A number of other researchers have attempted to give procedural accounts of how children might ac-
quire language. These accounts differ from the one given here in a number of ways. Some adlvance
trigger-based learning--unambignously augmenting one's language model with information gleaned from
isolated utterances--rather than the cross-situational approach presented here. Most explain only part
of the acquisition process, for instance, acquiring word-to-meaniag mappings but not word-to-category
mappings and grammar, or vice versa, assuming that the learner possesses some prior language-specific
knowledge. Furthermore, most do not deal with the problem of referential uncertainty. I will discuss
some related work in detail below. Other important related work which I will not have the opportunity
to discuss includes Granger (1977), Anderson (1981). Selfridge (1981), Berwick (1979. 1982. 1983). and(
Suppes et. al. (1991).

5.1.1 Semantic Bootstrapping

Grimshaw (1979, 1981) and Pinker (1984) have proposed an approach which has been termed the se-
mantic bootstrapping hypothesis. According to this approach, the child is assumed to first learn the

83
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meanings of individual words by an unspiecified prior p~roc'ess, 'lhUs at tlihe onst of st'nantit' boot st rap-
ping, a chilh can already map, for instance, Johnht to Joli.,.,s to S.EE.. and M/ary to Mary. F'urtlermore.
the seniantic b)ootstrapping hliypothesis asslnlies that the child's innalt, linguistic knowledge contains a
universal default mapping bet ween semantic concept cla.sses and t heir snt act ic realizat ion. hi.'- knowl-
edge includes, for instance, thbe fact bhat TIlIN(;S arte realized as nouns anti EV'[NTIS are rt'aliz,,d a,
verbs. Such language-universal default tuappings are termed canonical structure realization.,. VI i.g such
knowledge, the child can infer that John and Mary arte nouns, and %so ' is a verb, front the observation
that Johni and Mary are, THING(S, and SEE is an EVENT. lurt hermorc'. upon bearing an utterancte
such as John sou,' 31ary, a child can infer that the language slh is hearing admit, it terance's of' lih forin

noun-verb-nOU0l.

Pinker (p. 38) illustrates the above strategy via the following example. For simplicity, sluppos, that
universal grammar was describtd by the following grammar schiema.

S - {NP,\VP)

NP - {(DE'T), }

VP - {NP.\V}

This is a grammar schema in thi sense, that the order of the constituents in the right band sidtes of
the rules is not specified--the hearner must figure out the correct order for tihe language being learned.
Furthermore, suppose that the above grammar schema was innate. ['pon hearing the utteranct, l'iht boy
thr( i' rocks, the learner could form the following analysis

S

VP NP

N P V N I) ET
I I I I

N boy lh re u' rocks
I

and in doing so determine incorrect constituent order parameters and word-to-category mapplings for
English. If however, the learner knew that boy and rocks were nouns. lthr r was a verb. and 1h( was a
determiner, presumably by applying canonical structure realization rules to their known meanings. she
could determine that only the following structure is possible

S

N 1) V 1)

DET N V NP

I I I I
th( boy th rt i' N

I
rocks

allowing her to infer the correct constit uent order paramieters for English.
"The above example works however. only withi the oversimnplified granimmar schemia. If on01 adopts a

more comlprehieicsive theory of universal grammar. the learner miight not be able to tiniquely deternmine
the constlituenl order parameter settings. eveni given complete word-Io-category miiappings for every word
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in the input. Take for instance. the linguistic theory which wa., described in section 1.3. 1' tder thils
theory, the above utterance allows eight different analyses, where tlie three parameters [\V" initial/tinall.
[ initial/final], and [C" initial/finall each var, independently. One such analysis is shown below.

(c2

V2

V 1'

DDi

1h( N2I I \"t1  , \) Vi
Ih• Ni I I , -I

I throw, -(d D 2  \"O

I I

I rocks t
boaq

Whether semantic bootstrapping is a viable acquisition theory is a question which must be asked indepen-
dently for each linguistic theory proposed. The ability for semantic bootstrapping to uniquely constrain
potential analyses and determine parameter settings decreases as the linguistic theory becomes richer
and allows more variance between languages. Thus it. is unclear whether semantic bootstrapping will
explain acquisition under the correct, linguistic theory, whenever that is discovered.

The semantic bootstrapping hypothesis makes two crucial assumptions. First, word meanings are
acquired by an unspecified process prior to the acquisition of syntax. This implies that the process used to
acquire word meanings, whatever it, is. cannot, make use of syntactic information, since such information
is acquired only later. Furthermore, semantic bootstrapping is not a complete account of language
acquisition, since it does not offer an explanation of how that prior task is accomplished. It explains
only how language-specific syntax is acquired. not, how word-to-meaning mappings are acquired. Second,
semantic bootstrapping assumes that the learner uses a trigger-based strategy to acquire language-
specific information from isolated situations. Only those situations that uniquely determine language-
specific choices drive the language acquisition process. The above example was a failed attempt at
showing how semantic bootstrapping made such situations more predomiiant. constraining otherwise
ambiguous situations to be determinate. Furthermore. the assumption that word meanings are acquired
prior t~o syntax was motivated specifically as a method for constraining ambiguous situations. This
thesis suggests a different approach whereby the learner can acquire partial knowledge from ambiguous
situations and combine such partial knowledge across situations to infer unique solutions that could not
be determined from individual situations alone. This cross-situational approach thus also alleviates the
need to assume prior knowledge, since all such knowledge can be acquired simultaneously by the samne
mechanism.
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5.1.2 Syntactic Bootstrapping

Iln a series of papers (Gleitiman 1990, Fisher et at. 1991), (leitnian and her" colleagues havae proposed
all alternate learning strategy that has become known as syntactic Iootstral)Jpg. Ili contrast to st-
mnantic I)ootstrapping, where knowledge of word meanings guides tilie acquisition of syntax. syntactic
bootst rapping assumes essentially the reverse, that knowledge of tihle syntactic st ruct ures wit hi which
words appear guides the search for possible meanings. This alternate strategy is best illustrated by thil
following example. Suppose a child heard the utterance John tIhru- Ithi ball to lMarvy Ii tile context
where she observed John throwing a ball to Mary. Furthermore. suppose that the child already knew
that John. ball. and Mary were nouns meaning John, ball, and Mary respectively, that to was a prepo-

sition meaning TO(x). and that tht was a determiner denoting a definite reference operator. In this
circumstance, the child lacks only the category and meaning of thrt u. Finally, suppose that lie, child
can form a parse tree for the utterance. Gleitman (1990) and Fisher et al. (1991) suggest that such a
parse tree can be constructed using prosodic information available in parental speech to children.i In
this situation, the child can infer that throu, must, mean 'throw" since that is the only meaning consistent
with both the non-linguistic observation, as well as the utterance, given the partial information already
known about the meaning and syntax of that utterance.

The key idea here is that the syntactic information in tile Uttrerance acts as a filter on pote'ntial word-
to-meaning mappings for the unknown verb threw. At the time the utterance was heard, other things
may have been happening or true in the world. John may have been wearing a red shirt and Mary could
have been walking home from school. Either of these could be the meaning of some potential utterance
in that. situation. Thus a priori, a novel verb heard in this context could mean 'wear or 'walk'. Yet tile
learner could infer that thru(r could not mean 'wear* or 'walk' since neither of these could consistently fit
into the utterance template John x tlh ball to Mary. given both the known meanings of the remaining
words in the utterance, as well as its structure.

As stated above, this strategy differs little from that. proposed by Granger (1977) where the meaning
ofa single novel word can be determined from context. Gleitinan however, takes the above strategy a step
further. Site claims that the structure of an utterance alone can narrow the possible word-to-mneaning
mappings for a verb in that. utterance, even without knowledge of the meanings of the remaining words.
Suppose that a child observed John pushing a cup off the table causing it to fall. In this situation, an
utterance can potentially refer to either the pushing event, or the falling event. She claims that a child
hearing John pushed the cup would be able to infer thatr pushed refers to the pushing event and not thie
falling event since structurally, the utterance contains two noun phrases, and the argument structure
of PUSH(x, y). but not. FALL(x), is compatible with that structure. Similarly, a child hearing Th( cup
fell could determine that fell refers to the falling event, and not the pushing event, since its syntactic
structure is compatible with FALL(z), but not PUSH(', y). A child could make such inferences even
without knowing the meaning of John and cup, so long as she could determine the structure of the
utterance, using say prosodic information, and determine that John and th( cup were noun phrases.
using other syntactic principles.

Gleitman carries this argument even further. In the above examples, structural information was
used only as a filter, to select the correct interpretation from several possible interpretations of a given
non-linguistic observation. She suggests however, that a verb's subcategorization frame gives substantial
clues as t~o its meaning, independent of non-linguistic context. For example, the fact that tihe verb explain
can take a sentential complement, as in John) explained that he was late for school, indicates that it is a

'While they suggest that prosodic information alone can be used to construct the parse, they also assume that the child

knows the syntactic category of the nouns and prepositions in the utterance. Since such category infonnation can clearly
aid the parsing process, I see no reason why they adopt the stronger claim of parsing using o01y prosodic infornmation, given
that they in any case assume the availability of further information. It would seem more felicitous to assume that the child
can construct a parse tree using whatever information she has available, whether that be syntactic category information.
prosodic information, or both.
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verb of cognition-perception. A given verb muay adiit several dilft-reit sulbcalegorizatioil iraines. each
further hiniting its potential meaning. For example. the verb ,2plain cali also appear with, a direct objct

and a destination, a.s in Johin i'pla•in•d lbh fa ,cL to Mary. indicating that it I., also a xerb of iraifsbr.
'raken together. these two utterances strongly limit the possiblde nleaniiig tor (.rplu ll.

As outlined above, syntactic bootst rapping act ually comiprise., two dist inct strategies. lhlev canh I
summarized by the following two hypotheses.

1. Children can determine the meaning of aii unknown verb in an utterauce- by first deteruiniting tli.
structure of that utterance using prosodic information alone, and then selecting as the correct
verb meaning the one that allows that structure to have an interpretation consistent with otlio-

linguistic context, given prior knowledge of the categories and meanings of the remaining words, il
the utterance.

2. Children can constrain the possible meanings of an unknown verb by finding those meanings that
are compatible with each of the different subcategorization frames heard for that verb.

These two hypotheses may be combined to yield a single more comprehensive strategy. Both of Ite.e,
hypotheses, however, make two crucial assumptions. First, they assume thel availability of prior language-
specific information in the form of the word-to-meaning mappings, or at least word-to-category mappings,
for the nouns and prepositions that appear as arguments to the unknown verb. Second. though not
explicitly stated in their work, their methods appear to rely on the ability for prosodic parsing to
determine a unique structure for each utterance. This thesis describes techniques for learning even
without making the limiting assuml)tions of unambiguous parsing and prior language-specific knowledge.

The techniques described in this thesis could be extended to take prosodic information as input
along with word strings. This would in essence form a synthesis of the ideas presented ill this thesis with
those advocated by Gleitman and her colleagues. One must be careful to include only those prosodic
distinctions which are demonstrated to exist in the input, and which can be detected by children. This
would include less information than say, a full syntactic analysis of the type performed by lENVNIA.
Even though such prosodic information might be ambiguous and partial, the strategies described in Ihis
thesis could be used to find a language model which could consistently map the word strings to their
meanings, subject, to the constraints implied by the prosodic information. Such prosodic inforniation
would only ease the learning task when compared with the results presented in this thesis. If prosodic
information was only partially available, or even totally absent. performance of this extended technique
would degrade gracefully to the performance of the techniques discussed in this thesis. In order to
experimentally verify this claim, one must formulate a representation for prosodic information. along
with an appropriate linguistic theory constraining the possible syntactic analyses consistent wit h prosodic
information specified in that, representation. Such an experiment awaits future research.

5.1.3 Degree 0+ Learning

Lightfoot (1991) proposes a theory of how children determine parameter settings within a framework of
universal grammar. His central claim is that children use primarily unembedded material as evidence
for the parameter setting process. If this claim is true, a child must have access to sufficient structural
information about, the input utterances in order to differentiate embedded from unembedded material.
Deriving such structural information requires that the learner determine constituent order prior io ot her
parameter settings. Realizing this, Lightfoot suggests that children have access to syntactic category
information before the onset of parameter setting and utilize a strategy whetreby they wait for input
utterances which are simple enough to uniquely determine the setting of some parameter.
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(3) a. NP - Specifier N'
N' - (Adj)[N or N'] PP

(7) a. XP - {Specifier. X'}
1. X' - {X or X',(YP)}

(8) a. the house
b. students of linguistics, belief that Susan left

Under (7), the linear order of constituents constitutes a paramneter that is set on exposure to
some trigger. The English-speaking child hears phrases like (8a) and. after some development.
analyzes them as consisting of two words, one of a closed-class (thl) and the other of an open
class (house); in light of this and in light of the parameter in (7a), the child adopts the first
rule of (3a). Likewise, exposure to phrases like (81b) suffices to set the parameter in (71)).
such that, the second rule of (3a) emerges. [...]

Consider, for a moment, the development that must take place before these parameters can
be set. children acquire the sounds of their languages and come to use mnn as a word and a
noun with the meaning roughly of the plural of 'tnan'. This is a nontrivial process. and many
people have explained how it happens. Having established that men is a noun, children
later acquire the constituent structure of mun from thc city. if I am right, by setting the
parameters in (7) and projecting to NP accordingly via N'. yielding

[NP SPeC [N' [N' [N iiien]][pp from the city]]].

Lebeaux (1988) discusses this aspect, of language acquisition very interestingly. In setting
these particular parameters, children operate with partially formed representations that in-
clude [N men], [p from], [sp, the]. and [N city]. They are operating not with "raw data" or
mere words but with partially analyzed structures.

Men from th( city and similar expressions occur in the child's environment with an appro-
priate frequency, and, given a partially formed grammar whereby men and city are classified
as nouns, a child can assign a projection conforming to (7).

[pp. 6- 7]

Lightfoot's proposal is thus very similar to Pinker's in this regard. It tacitly assumes that children
determine constituent order from isolated utterances which uniquely determine that order. It uses a
trigger-based approach in contrast to the cross-situational strategy advocated in this thesis. It is unclear
whether Lightfoot's central claims about degree 0+ learnability are compatible with a cross-situational
learning strategy. Such investigation merits future work.

5.1.4 Salveter

Salveter (1979, 1982) describes a system called MORAN, which like MAIMRA and DAVRA. learns word
meanings from correlated linguistic and non-linguistic input. MORAN is presented with a sequence of
utterances. Each utterance is paired with a sequence of two scenes described by a conjunction of atomic
formula. Each utterance describes the state change occurring between the two scenes with which it
is paired. The utterances are presented to MORAN in a preproce~sed case frame format, not as word
strings. From each utterance/scene-description pair in isolation, MORAN infers what Salveter calls a
conceptual meaning structure (CMS) which attempts to capture the essence of the meaning of the verb
in that. utterance. This CMS is a subset of the two scenes that identifies the portion of the scenes referred
to by the utterance. In this CMS the arguments of the atomic formula that are linked to noun phrases
are replaced by variables labeled with the syntactic positions those noun phrases fill in the utterance.
The process of inferring CMSs is reminiscent of the fracturing operation performed by MAIMRA and
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1)AVkA, whiieb% verb iiieaiiiiigs art, coiist ructedl by ext ract liug out arguliiit'it- froin whl ul itcIralic,
ineaiiiiigs. \lo.A~N's variant (of t his operl-a ou is mutclh siiiipler haii t lit aiialogoun operationi jorfuriiid
by MIAMM~A alid 1)AVRA Silice the liligulistic illpipt cilllvs to MORAN preparsed, This hprti)roctssed iulpli

imiplicit ly relies oti prior laiiguage-sJpecific knowledge of' bothi thle granimiar and the svnt ac-t ic cat gorics
of thle words inl the utterance. MIORA N does 11ot ijiodel t hie acquisition (ii grammnar or svnt act ic calt-tor\
iiilorinat iou. amid fuirthermiore does nlot (leal wit hi all\ anibiguit y that iiighit arise fromi flit, parsilig process.
Additioiially, MIORA N dloe's not deal withI refereuii al nnlcert anit v tiit lie corpus. F'urt hermiore. Ht Ii ctorjpu!
preseijied to MORAN relies oii a subtle implicit link betweeni tile objects tin thle world auth Ijiguist ic tokeiis
used to refer to these objects. Part of the dlifficultyv faced b\ NIAINIRA anld 1)AVR. is (hiscerimiig that a
l1inguistic token such a~s Johit refers to a concep~tual struictutre fragmenit such as John .NIoRiu\Is g %ivil
that. itiforinat ion a priori due to the lack of a formal (listilictoion bet weeii thle iiot ioni of' a flinguistic t okt ii

atid a conicept~ual st ructutre exlpressioii. (Giveil t his inforn at ion. tlie( fract urilig process beconmes trivial.
MORAN therefore. dloes not exhibit the cross-situational behavior attributed to ANliiR.A anid 1).wR.-
and lit fact.. learns every verb meaning fromi Just a single utterance. '[his sef-ins very limplauisible as a
miodel of child language acquisition. InI coiitmrst to MAIMMA atid DAVRA - however. MlORAN is able to
learnt polysemouis senises for verbs: one for each utterance providled for a given verb. MORAN focuses oil
extracti.tig out flthe comntmon substructure for polysenious meanings at t eipt iig to maximize ctiliiiiioiialit\
between different word senses and build a catalog otf Itigler-level conceptunal buildinig blocks. a task iiOt
at teinptell by thie techniques discussed inl this thesis.

5.1.5 Pustejovsky

Pustejovsky (1987. 1988) describes a system called TULLY. which also operates iii a fashiioi similar to
MAMMRA, DAYRA, and MORAN,- learning word meaniings fromt pairs of liiiguist ic aiid iioi-liiiguist ic inputit
Like MORAN, TULLY is giveni parsed ut~terances as iniput. Each utterance is associated with a Ipredicate
calculus dlescript~ioni of three part~s of a single event described by that ut terance: its beguimiiig. mididlelt.
aid~ end. From this input. TUTLLY derives a thematic mappinIfg i .ndex, a data st ructutre represeiit iiig
the 9-roles borne by each of the arguments to t-he nuaiii predicate. TU.LLY is thus siniiilar to IKENUNiA

except that TULLY dlerives thie 9-grids which KENUNIA curreiitV mvnust he given as prior lamiguage-sp~ecitic
knowledge. Like MORAN. the t~ask faced by TULLY is nmuchi simpler than that faced by NIMIt~RAx DAV~RA.x
or KENUNIA , since TIULLY is presented with unanibiguous parsed iniput.. is givetithle correspoiidetice
betweeni nouns and their referents, and does not have to dleal with referenitial uiicertaint~v siiice, it is givenl
the correspondenice between a sitngle utt~eratice and the semlanitic relpresentatioti of the eveiit dlescrilbed
lw that utteranice. TU:LLY does niot learn language-specific syntactic iniformation or word-to-category
mnappiiigs. Furthermore. TULLY implausibly learns verb meanings from Isolated utteranices without alliv
cross-situiat~ional processinig. Multiple utteratices for the same verb cause T1ULLY to getieralize to the(
least common genieralization of thie inidividual ut~teranices. TULLY howpver, goes beyond KENVNIA ill
trying to account for the acqutisitlioii of a variety of niarkeditess features for 9-roles including [+mot ion].
[±abst~ract]. [±direct], [±part~it ive]. and [±animatre].

5.1.6 Rayner et al.

Ray ncr et al. ( 1988) describe a syst~em that uses cross-situationial techniques to (elet ritihe the sviit act ic
category of each wordl inl a corpus of utt-erances. They observe that while inl the originial formula-
tion, a deffinite clause grammar (Pereira and Warreni 1980) normally definies a two-argunient predhicate
parserC(Utterance, Tree) with] the( hexicoii represenitedl (irectly inl the( clauses of' the( grammar. aii al-
terniat~e formulation would allow the lexiconi to be represetited explicitly a~s anl addit ioiial argumnent to
lime parser relation. yiehdiiig a three argumenit predlicate pars er (Utterantce, Tree, Lexicon). This t hire.
argtitnent rehat ion call be used] to leari syntactlic category imuforniat iou by a t echul qie su mmmarized in
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?- Lexicon = [entry(the,_),
entry(cup,_), Lexicon = [entry(the,det),
entry(slid,_), entry(cup,n),

entry(fron,_), entry(slid,v),
entry(john,-9, entry(from,p),

entry(to,_), = entry(john,n),
entry(mary,_), entry(to~p),

entry(bill,_)], entry (ary,n),
parser([the,cup.slid,fron,john,to,maryJ,_,Lexicon), entry(bill,n)].
parser([the,cup,slid,from,mary,to,bill],_,Lexicon),

parser([the,cup,slid,fron,bill,to,john],_,Lexicon).

Figure 5.1: The technique used by Rayner et al. (1988) to acquire syntactic category information
from a corpus of utterances.

figure 5.1. Here, a query is formed containing a conjunction of calls to the parser. one for each utterance
in the corpus. All of the calls share a common Lexicon, while in each call, the Tree is left unbound. The
Lexicon is initialized with an entry for each word appearing in the corpus where the syntactic category
of each such initial entry is left unbound. The purpose of this initial lexicon is to enforce the mnonosemy
constraint that each word in the corpus be assigned a unique syntactic category. The result of issuing
the query in the above example is a lexicon, with instantiated syntactic categories for each lexical entry,
such that with that lexicon, all of the words in the corpus can be parsed. Note that there could be
several such lexicons, each produced by backtracking.

Rayner et al. use a strong cross-situational strategy which is equivalent to the strategy used in
section 3.2. The PROLOG program from figure 5.1 is a direct embodiment of the architecture depicted
in figure 2.2. Part I extends the work of Rayner et al. in a number of important ways. First. t le system
described by Rayner et al. learns only word-to-category mappings from a corpus consisting only of
linguistic input. MAIMRA and DAVRA learn word-to-meaning mappings in addition to word-to-category
mappings by correlating the non-linguistic context with the linguistic input. Second. like MAINtRA. the
system described by Rayner et al. is given a fixed language-specific grammar as input. DAVRA and
KENITNIA learn language-specific grammatical information along with the lexicon. Third, like the first
implementation of DAVRA, the system described by Rayner et al. keeps the whole corpus in memory
throughout the learning process, using a simple chronological backtracking scheme to search for a lexicon
consistent with the entire corpus. MAIMRA explores ways of representing the consistent language models
using disjunctive lexicon formulae so that the corpus need not be retained in memory to support strong
cross-situational learning. The revised implementation of DAVRA, along with KENUNIA, explore weaker
learning strategies which also do not retain the corpus in memory. Nonetheless, the work of Rayner et al.
was strong early motivation for the work described in this thesis.

5.1.7 Feldman

Feldman et al. (1990) have proposed a miniature language acquisition task as a touchstone problem for
cognitive sciencu. This task is similar in many ways to the language learning task described in part I of
this thesis, combined with the visual perception task described in part 11 of this thesis. The proposed
task is to construct a computer system with the following capacity.

The system is given examples of pictures paired with true statements about those pictures
in an arbitrary language.
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Tlie, svste II I is to learn t it, relevant poJrt ion of' tt lIe laIiguaget' wel enIoilgI so III haI given ane
sent ence oft hat language. it call tell whet her or not I lie, senteince is t rue of t lie- acconi;anN InIg
pictutre.

Feldmanii et al. go oil to specify anl m'stalice of t his geiiera I task, called tilie L,, problemu. where tilie

pictutres are constrained to coit~aln only geomuetric higureso ol iniji ed variat ion and thet laiiguagc fraggmenti
is conlst ralined to describe only a lintited number of spat ial relat ions bet weeii t hose figures.

Feldman atid his colleagues have explored a. nuimber of apiproachtes to solving the( L,) probldem. Wcber
and Stolcke, ( 1990) describe a traditional symboli c applroachi where syit act ic kiiowledge is represented is
a tinifiaion grailtniar aiid] semantic informtat ion is represented 'in first-order logic. This svsteni however.
does not learn. It. is simply a query processor for Lo as rest ricted to Eiiglish. Stolcke ( 1990) describes a1
system which does learn to solve the Lo t~ask. This systeii is based oii simple recurrent iieumral net works.
The liniguistic input, to their system cotisists of a sequence of sentences such as .-I light i ith Itu bti~i

asmall squarf. These sentences are complosed out of a vocabulary cnann ieenwrs h
words are presenlt~ed one-by-one t~o the inetwork, b~einig repiresenited as orthogonal 19-bit featuore %vctors.
The iton-linguist ic input paired withI each sentence consists of a sem ant ic rep~reseiitat ion of a pici lreý
associated with that sentence. This semnant ic rep~resenitat ion is enicodled as a 22-bit1 feat ure yeclor ofit li
following formi.

Predicat~e Argumienit 1 Argumenet 2

TL RA B F F (S T S ML 1) 1, (S T S ML D 1

relation mod shape, size shade shape size shade

Once trained. thle nietwork acts as a map bet ween a sentence and Its semtant ic represenitat ion. Thli wot'j
of the setitence are presented to the net work oiie-bv-one. The semlant ic represent at ion appears at tilte

out put of the net work after the final word hias beenu presenitedl as iniput . TI'll( net work thmus i ncludes
somte feedback to model t~me stored state during senitentic ptrocessinmg. FIlit, uintwork is trainmed iisimni back-
propagatioti while being presented with positive-only inst ances of sentteiices pairedl with Ifivthir cotrrect
semanti1c representation. Thus their systeim does not admnit referential unicertainty. 'lThe fragitment of I,,
t~hat Stolcke considers allows a t~otal of 5052 distinct sentetnces. Of these. 353 wterte used as t raininig
sentences and the remainder as test sentences. Stolcke (hoes not report tile percenitage of test sentemnce's
which his syst~em is correct ly able t~o process, except for stat ing t hat thle t raining set cont ainmed 61i out
of all 81 possible 'sinmple NP sentences' and that thet sys eni geineralized correctly to tilie remmainting 20
simple NP sentences. Weber ( 1991) and Stolcke ( 1991 ) describe niore recent cont inuat ioni of t his work.

5.2 Discussion

An ultimat~e process account of child language acquisition mnust mneet two criteria. It must be able to
acquire any' language which children canl acquire, and it must be able to do so for atty, corpuis onl which a
child would be successful. It. would be very hard t~o prove that any given algorithm miet these two universal
criteria since we lack informiat~iot which would allow us to performt such uiniversal quantiificat ion. We
have little informationi t-hat circumscribes the child-learnable languiages, or the( situatioiis which sutpport
that learnability. Rather thian a formal proof of adequacy. a more reasonable approach would be to
amnass quantitative evidence that, a given algorit~hmi can acquire many different laniguages given a variety
of corpora in those lamnguages. This thesis takes only a first. exceedingly niodest. step in that dlirectionl.
wit~h thre demonstration thiat DAVRA can process very small fragiments of bothI Einglishm and] Japanese. Thet
longer-termi goal of this research is to extend this ability to process larger corpora in differentt laniguages.
Larger corpora are needed to guarantee that. thie algorithmns scale. Ideally. such corpora should cotisist
of transcripts of actutal parental speech t.o children, itnstead of thie s mnt~hetic text currently used.
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Successfully processing large nat ural corpora requires suriiounting a number of hurdle., in addition
to the problemi of developing a syntactic theory capable of accountingt for tle linguistic plieinoiiena in
the corpus. One technical difficulty is that the learning strategy prop osed bert ( rquir's, non-linguislic
annotation for the linguistic input. (Remember. "'Yon can't learn a language siiiply Ibv listlning to

the radio.") Available transcript ions do not conie Withi such aniiiotations. at least itl annitationl, in
the correct form or which contain the information, needed to put it iii thle correct fori m. Iher, is a
way around this problem. One could use aii available dictionary to parse the corpus under a fixed
set of parameter settings. Pseudo-seniantic information can then be derived froin the resulting parse,
trees. The parse trees themselves can be taken as niianing expressionis in a .MAINIRA/I)DAVR.A framework.
Alternatively. one could construct a KENUNIA style 0i-map by applying 0-theory in reverse. Each nouni
could be giveen a random token as its referent. Ot her terminals would fie given I as t heir referent. Thie 0-
criterion requires that complements of non-funct ional categories be ti-marked. For each such coiiiplemien!I
configuration, a 0-mapping is constructed matching a randonily chosen 0-role to the ultimate referent
of the complement. In both of these cases, noise would then be added to model referential uncertaiiltv.
For the MAINIRA/DAVRA framework, the correct ineaning expression would be added to a set of randoiii
alternate expressions, possibly derived as perturbations of the correct meaning. For the KENVt'NI,
framework, several other random 0-nmappings could be added to the 0-map. The learning algorithun
would then be applied to this corpus, without access to the dictionary and parameter settings used
in its construction. The algorithm would be deemed successful if it could accurately reconustruct the
dictionary and parameter settings. This technique for pseudo-semantic annotation has aii added benefit.
By varying the amount of noise added to the non-linguistic input one could analytically determine the
sensitivity of the learning algorithms to such noise. Such sensitivity predictions could be compared wit h
actual sensitrivity nmeasurements performed oii children as aii experimental test of predictions imade by
the theory.

A much more serious hurdle remains, however. before the above experiment could he atteimplued. The
cross-situational learning strategy advocated iii this thesis requires that the learner find a single grammiiar
and lexicon that can consistently explain an entire corpus. This would be virtually impossible for nat ural
corpora for three reasons. First, natural corpora containi ungramimmatical input. Even ignoring input that
is truly ungrammatical, tIe current state of the art in linguistic theory is not capable of accounting for
many phenomena occurring in natural text. While such text is graimniatical in principle. it must be
treated as ungramnmatical relative to our meager linguistic theories. Ai-y strict cross-sit uat ional learning
stirdteg., would fail to find a language model consistent with a corpus that contained ungrammatical input.
Children however, call learn from input a substantial fraction of which is ungrammatical. Second. a k(-%
assunmption made by each of the systems discussed in part I of this thesis was the monosemny const raint.
the requirement that each word map to a unique category and meaning. This assumption is clearly
false. Polysemy runs rampant in human language. Here again, a strict cross-situational strategy would
fail to find a consistent language model when presented with a corpus that could only be explained by
a polyseinous lexicon. Children however, have no difficulty learning polysenious words. A tinal hurdle
involves referential uncertainty. What if the set of meanings conjectured by the learner as a possible
meaning of some observed utterance does not contain the correct meaning? This could happen if tle
correct meaning of some utterance is not readily apparent from its non-linguistic context. or if the
learner incorrectly discards the correct meaning, by some measure of salience, to reduce the referential
uncertainty and make cross-situational learning more tractable. In this situation again, the learner. not
knowing that no possible meaning was hypothesized for the utterance, would fail to find a consistent
language model.

Each of these three problems is symptommiatic of a single imore general problem: noise in the input.
Such noise can be dealt with using a variety of techniques. One way would be to assign weights to(
different lexical entries and parameter settings, making the decision between alternative lexical entries
and parameter settings a graded one, rather than an absolute one. A scheme could be adopted for
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lintigust ic theory, would be to allow utteranices to be parsed with mtinulor ptrt nrbat joivs of the laiigiiage-
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associated cost. Aui even itore, genieral approachI woul 1( tt to have t lie parser tr( dulc a qnal it ' ii ieasiirte
as- out put. Successful ptarses would have a high quality ineasure while, utisurcessflil parst's would still
have a ioli-zero quality tmeasure if the coul -a lmiost' be parsed. 'Ihe( qutality illeasurt, could bc based
onI which comipotnents of a iiiodiilar grammliat ical thieory were violatetd. Ili t his vase. thle learneur wouldb
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as noise. A similar biut tiorf plausihblte st rategy could be- used to siupphort pohysuiiy. 'Ilie- laiigiuagt Mtohel
could he extetided to allow ptolysemlouis lexical enitries. The cost of a hatigiiagt' iiiodeh toiiltd htt tlthicii
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language model, ite. the onie xxii I least poyei.that coolth still ('olsisit'iilyl accounit for tlit- corpus.
While all of t he above approaches art' conicetuhttally straight forwxard, stibsi alit ia I details remiaini to be
workedh out. This is left for future restearchi.
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Part II

Grounding Language in Perception
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Abigail
Help New Open ... Save Save As ... Complete Slow Perceive Movi-e Begin Franre Poll Halt Envison

WýI.!
/ / ,

Listeerier

Figure 6.1: A typical frame from a movie which is shown to Abigail. The objects in the frame.
such as tables and chairs, are constructed solely from line segments and circles.



Chapter 6

Introduction

Part II of this thesis advances a theory of event perception. When people observe the world they
can generally determine whether certain events have happened. Furthermore, they call describe thoset
events using language. For instance, after seeing .John throw a ball t~o Mary, the observer call say that
the event described by the utterance John thretw, Ih ball to Mary has happened. along with perhaps
events described by other utterances. Part II of this thesis suggests a mechanism to describe how
event perception may work. This mechanism has been partially implemented in a computer program
called ABIGAIL. ABIGAIL watches a computer-generated animated stick-figure movie and constructs
descriptions of the events that occur in that movie. The input to ABIGAIL consists solely of the positions.
orientations. shapes, and sizes of the line segments and circles which constitute the image at each frame
during the movie. Figure 6.1 illustrates one frame of a movie presented to ABIGAIL. From this input.
ABIGAIL segments the image into objects, each object comprised of several line segnments and circles.
and delineates the events in which those objects participate.

At the highest level, ABIGAIL can be described as a program that takes an utterance and a movie
segment as input, and determines whether that utterance describes an event that occurred during that
movie segment.

ABIGAIL(U, In) - {true. false}

Alternatively, ABIGAIL can be thought of as a program that takes a movie segment as input. and produces
utterances that describe the events which occurred during that segment..

ABIGAIL(m) - {u}

ABIGAIL does not, however, directly relate utterances to movies. An intermediate semantic represen-
tation mediates between an utterance and a movie. For example, the semantic representation for the
utterance John threw, 1h( ball to Mary might be CAUSE(John. GO(ball. TO(Mary))). The intermedi-
ate semantic representation connects two halves of ABIGAIL. One half relates the semantic representation
to the movie while the other half relates it to an utterance. The general architecture is depicted in fig-
ure 6.2. In this architecture, the box labeled 'perception' relates semantic descriptions to movies. It can
be thought, of either as a predicate

perception(s, m) -I {true, false}

that determines whether the event, described by some semantic expression s occurred during the movie
segment in, or alternatively as a function

perception(m) - {s}
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Figure 6.2: A depiction of the architecture of Abigail's language faculty. It contains three processing
modules: a parser, a linker, and a perceptual component, that mutually constrain five representa-
tions: the input utterance. the syntax of that utterance. the meaning of that utterance. the visual
perception of events in the world, and a language model comprising a gramniar and a lexicon. The
lexicon in turn maps words to their syntactic category and meaning. (;iven observations and a
lexicon as input, this architecture can produce as output, utterances which explain those observa-
tions. The long-term objective is to combine Abigail's perceptual component with the language
learning techniques described in part I of this thesis to provide a comprehensive model of language
acquisition. As a language acquisition device. when given pairs of observations and utterances which
explain those observations as input, this architecture will produce as output. a language model for
the language in which those utterances were phrased. Part I of this thesis elaborates on this language
acquisition process.

that produces a set of semantic expressions describing those events which occurred during the movie

segment. The two remaining boxes in figure 6.2 relate the seniantic representation to anl utterance.

The architecture depicted in figure 6.2 is a very general mechanisnm for grounding language in percep-

tion. As discussed on page 27, it. can support. the comprehension, generationi. antd acquisitioii of language.
Part. I of trhis thesis focussed on using this architecture to support language acquisition. It described

the parser and linker modules in detail as they related to the language acquisition task. Part If of this
thesis will focus solely on the perception nmodule, i.e. mechanisms for producing semantic descriptions
of events from (simulated) visual input. The two halves of this thesis discuss the two halves of this
architecture independently. The reason for this is that the two halves have not yet been integrated into
a single implementation. This integration awaits further research.

After displaying the architecture in figure 6.2, a natural first. question that arises is: What is an ap-

propriate intermediale semantic ripresptnlalioný Semantic representations are normally taken to encode

the meaning of an utterance. Chapter 7 argues that the notions of support, contact, anid attachment are

central to defining the meanings of simple spatial motion verbs such as throw, pick up. pit, and walk.

For instance, throwing involves moving one's hand while grasping an object (attachmnent). resulting in
the unsupported motion of that, object. Chapter 7 further motivates the need for*ncluding the notions

of support., contact. and attachment as part. of a semantic representation scheme by demonistrating the

central role these notions play in numerous spatial motion verbs. Definitions for these verbs are presented
in a novel representation scheme that incorporates these notions. These definitions are compared with

those proposed by other researchers which do not incorporate such notions. I claim that incorporating
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the notions of support, contact, and attachment allows formulating more precise definitions of' these
verbs.

If one accepts the argument that the seniantic representation should incorporate Ihe notionsl of
support. contact. and attachment, a second question arises: Hou do(.s on( i 1rti( .support. con lah. and
attachnitnt rIlahioiship.s? An answer to this question is necessary in order to construct tie perception
box from figure 6.2. Chapter 8 offers a unified answer to that question: counterfactual simulationi. An
object is supported if it does not fall when one imagines the short-term future. Likewise. one object
supports another object if the latter is supported but loses that support when ouie imagines the short-
terin future of a world without the former object. WVhen one object supports anotsher they must be in

contact with each other. Furthermore, two objects are assumed to be attached to each other if such
an attachment must be hypothesized to explain the fact that one object supports the other. (Chapter N
elaborates on these ideas. A simplified version of these ideas has been inmplemented in ABIG;AIL. ABIGAIL
uses counterfactual simulation to determine the attachment reiations betweon the line seg(Ments and
circles which constitute each frame of the movie she watches. This allows her to aggregate the line
segments and circle into objects. She then uses counterfactual simuiation to determine support. contact,
and attachment relations between those objects. Chapter 8 also discusses sonme experiments performed
by Freyd et al. (1988) which give evidence that human visual perception operates in an analogous fashion.

If one accepts the claim that. support, contact, and attachment relations are recovered by counter-
factual simulation, a third question then arises: What iQ th( natilr( of th( nu(chantt.sti tt.s(d to p rforui
rounterfactual sunulation ? Nominally, the simulator predicts the behavior of machine-like mechanisms.
parts connected by joints, under the influence of forces such as gravity. Chapter 9 argues however.
that traditional approaches to kinematic simulation. namely those based on numerical integration, are
inappropriate as cognitive models of the human imagination capacity since the traditional approaches
take physical accuracy to be primary and collision detection to be secondary. In contrast. human visual
perception appears to take certain naive physical notions such as substantiality, the constraint that solid
objects can't pass through one another. and continuity. the constraint that objects must follow continu-
ous paths during motion, to be primary. Chapter 9 presents a kinematic simulator for the micro-world
of line segments and circles which takes substantiality and continuity, along with gravity, to be primary.
This simulator directly encodes such principles allowing it to quickly predict in a single step. for instance.
that an object will fall precisely the distance required for it to come in contact with tlie object beneath
it. Traditional simulators based on numerical integration would require many small perturbations to
make such a prediction. While such simulators are more accurate than the simulator described here. and
can simulate a larger class of mechanisms, the simulator described in chapter 9 is much faster and better
suited to the task of discerning support. contact, and attachment relations. Chapter 9 also discusses
some experiments performed by Baillargeon et al. (1985), Baillargeon (1986. 1987). and Spelke (198q)
which give evidence thatr young infants are sensitive to violations of naive physical constraints such as
substantialitv and continuity. The remainder of this chapter describes the event perception task faced
by ABIGAIL since this task motivates the formulation of the algorithms discussed later in part I1 of this
thesis.

6.1 The Event Perception Task

ABIGAIL is shown a computer-generated animation depicting objects such as tables, chairs, boxes, balls.
and people. During the movie, the objects participate in events. The people walk, pick up, and put down
objects, and so forth. The task faced by ABIGAIL is to determine which events occur and when they
happened. For instance, after a movie segment depicting John walking to the table, she is to produce
a representation of the utterance John walked to Ih tabl. For simplicity, the movie shown to ABIGAIL
is a stick figure animation, constructed solely from line segments and circles. These line segments and
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circles. collect ivelv called figures. const It tLit t he lowest level st rtct I ur of th ie i iae. 1Higher-level Obj¢ects.
such as tables, chairs, and people, are constructed out of collect ions of figures. F igur, 6i. I shows a ty pical
frame from one of' the nmovies which is shown to ABIGAIl..

The movie shown to ABIGAIL consists of a sequence of such frames containing oh.ject, builh out of
figures. As the movie progresses. the objects mnove about and participate in various events. ABIGAIl.
is not given any explicit informiation about the non-atoliic entititis in the movie. Slit is 0ot told which
collections of figures constitute objects nor is she told which events they participaiv iii. F'urt .Lgrinore.
she is not even told what types of objects exists in the world or what types of' evelils cali occur. lhe
only input, that ABI;AIL receives is the position, orientation, shape, and size of the figures in each imiovie
frame.

ABIGAIL faces a two-stage task. First, she luist recover a description of lhe objects and evients
occurring in the movie, solely from information about the constituent figures. Second. she mlust forii
a mapping between the recovered object and event representations. and the linguistic utteranlces which
describe those events. To date, only part of the first task has been accomplished. The second task
has not been attempted. Part 11 of this thesis therefore, addresses only the first task. It proposes4 a
novel approach to the task of event perception and presents, in detail, the mechanismis untderlyinig this
approach. As discussed in chapter 1. the long-term goal of this researth is to use the object and event
representations recovered by ABIGAIL as the non-linguistic input to language acquisition models such
as those described in part 1 of this thesis. Linking models of language acquisition to models of event
perception would allow a comprehensive study of the acquisition of word meanings iii a way which is not

possible without perceptual grounding of those word meanings.
The perceptual mechanisms used by ABIGAIL to recover object and event descriptions are very

general. Uinlike some prior approaches, the- do not incorporate any knowledge that is specific to amly
class of objects or events. Thus, they do not contain models of particular objects such as tables or

particular events such as walking. The intention is that the same unaltered perceptual lilechauis|l be
capable of recovering reasonable object and event descriptions from any movie constructed out of line
segments and circles.

In order to verify whether ABIGAIL's unaltered perceptual mechanisms are indeed capable of analyzing
any movie, a simple movie construction tool was created to facilitate the generation of numerous movies
with which to test, ABIGAIL. This tool takes a script and generates the positions. orientations, shapes.
and sizes of the figures at each frame during the movie. While the script itself delineates objects and
events, the perceptual mechanisms of ABIGAIL have no access to the representation of objects and events
in the script and must recover the object and event information solely from the positions, orientations.
shapes, and sizes of the figures in the movie generated from the script.

A sample movie script is shown in figure 6.3. This script generates a movie consisting of 1063 frames.
the first of which is depicted in figure 6.1. Each frame is constructed from 43 figures: 5 circles and

38 line segments. These figures form caricatures of 7 objects: a table, two chairs, a box. a ball. a mnan.
and a woman. The script, of this movie is simple and fairly boring. The mal. John. walks over to the
table and picks up tile ball. He turns around and walks back to his original position. lie then turns
around again, walks back to the table, puts the ball down on the table, turns around. and walks back
to his original posit~ion. The woman, Mary. then performs a similar task. Finally. John walks toward
the table, picks up the ball, carries itr over to Mary, and gives it. to her. He then turns around and walks
back to his place, after which Mary walks toward the table, puts the ball on the table, and returns to her
place. Figure 6.4 depicts the general sequence of events in this movie by showing a selection of several
key frames from the movie.

The original expectation was that ABIGAIL would be able to successfuilly process numerous movies.
That goal was overly ambitious. Most of the development of ABIGAIL was driven by only one movie. the
one generated by the script, in figure 6.3 and depicted in figure 6.4. In fact, due to computer processing
limitations and to the current, incomplete state of ABIGAIL's implementation. only a portion of that
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(define-movie moviel ((table (make-instance
'table :name 'table :x 16.0 :y 0.0 :world world))

(chairn (make-instance
'chair :name 'chairn :x 12.0 :y 0.0 :world world))

(chair2 (make-instance
'chair
:name 'chair2 :x 20.0 :y 0.0 :direction -1.0 :world world))

(box (make-instance 'box :name 'box :x 18.0 :y 2.525 :world world))
(ball (make-instance

'ball :name 'ball :x 14.0 :y 3.0 :world world))

(john (make-instance
'man :name 'john :x 3.0 :y 0.0 :world world))

(mary (make-instance
'woman
:name 'mary :x 30.0 :y 0.0 :direction -1.0 :world world)))

(walk-to john (x (center ball)))
(pick-up (left-hand john) ball)
(about-face john)
(walk-n-steps john 4)
(walk-to john (x (center table)))
(put-down (left-hand john)

(x (center table))
(+ (y (pointl (top table))) (size (circle ball))))

(about-face john)
(walk-n-steps john 4)

(about-face john)
(walk-to mary (x (center ball)))
(pick-up (left-hand mary) ball)

(about-face mary)
(walk-n-steps mary 5)
(walk-to mary (x (center table)))
(put-down (left-hand mary)

(x (center table))
(+ (y (pointl (top table))) (size (circle ball))))

(about-face mary)

(walk-n-steps mary 5)
(about-face nary)
(walk-to john (x (center ball)))

(pick-up (right-hand john) ball)
(walk-to john (x (center mary)))

(give (right-hand john) (left-hand mary))
(about-face john)
(walk-n-steps john 9)
(walk-to mary (x (center table)))

(put-down (left-hand mary)

(x (center table))
(+ (y (pointl (top table))) (size (circle ball))))

(about-face mary)
(walk-n-steps mary 5)
(about-face mary))

Figure 6.3: A script used to generate a movie to be watched by Abigail. The first frame of this
movie is shown in figure 6.1. The general sequence of events in this movie is depicted by the selection
of frames in figure 6.4.



6.1. THE EVENT PERCEPTION TASIK 103

Frame 0 Frame 299

Frame 29 Frame 356

Frame 64 Frame 403

Frame 69 Frame 509

Frame 71 Frame 662

Frame 112 Frame 730

Frame 144 Frame 750

Frame 200 Frame 780

Figure 6.4: Several key frames depicting the general sequence of events from the movie used to drive
the development, of Abigail. The script used to generate this movie is given in figure 6.3. Frame 0
is shown in greater detail in figure 6.1.
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movie has been successfully processed and analyzed by ABI;AIL. Future work will attempt to extend
the results described in this thesis by running ABIGAIL on other movies.

6.2 Outline

The remainder of part 11 of this thesis contains four chapters. ('hapter 7 advances that claim that the
notions of support, contact, and attachment play a pivotal role in defining the prototypical meaning,
of simple spatial motion verbs. It surveys past attempts at defining the meanings of many such verb.,.
finding these attempts inadequate. An alternative representation scheme is pill forth which highlights
the notions of support, contact and attachment. Cihapter 8 proposes a comnputational imechanism.
implement~ed in ABIGAIL, for perceiving support, contact. and attachment relations. It advances the
claim that such relations are not recovered by static analysis of images but rather require counterfact ual
simulation. Chapter 9 suggests that the simulation performed as part of event perceptionl differ., from
traditional kinematic simulation in that it takes the naive physical notions of substantiality. continuity.
gravity, and ground plane to be primary, and physical accuracy and coverage to be secondary. It describes
in detail, the novel kinematic simulator that acts as ABIGAIL's imagination capacity. ('hapter 10 discusses
related work and concludes with an outline of potential future work.



Chapter 7

Lexical Semantics

Part II of this thesis advances a thleory of event perception. It proposes a inechaaiin for how piopit-

visually recognize t he occurrence of events descrilbed by simple spatial Iilot lou ' ,rhbs su-'h as lh i ir. lA
pick up, and put. The proposed recognition process is deconipositional. Each event type, is s',C'e.-Siv,,l%
broken down into inore basic notions that utinmately can be grounded il perception. For instalnce. a
throwing event comprises two constituent events: moving on"es hand while grasping an objIect, ollowed
by the unsupported motion of that object. The words grasp•nq and unsupporltd play a pivotal role ii
this description of throwing. An event would not typically be described as throwing if it did not iaieolye
the grasping and releasing of an object along with the re.sulting unsupp)orted motion. Many prior
approaches to defining the ineaning of the word throw (e.g. Miller 1972. Schank 1973. .ackendoff 1s¶13.
and Pinker 1989). however. (1o not highlight this pivotal role. In this chapter. I advance the claim that
the notions of support. contact. and attachment are central to describing many conintoii spatial Inloion
events. Accurately delineating the occurrence of such events front non-occurrences hinges on Ilite ahililv
of perceiving support, contact, and attachment relationships letween A objects in the world. In cliapt ,r,,
and 9. I offer a theory of how to ground the perception of these relations.

A central assumption of this work is that perception is intimately tied to language. We use words
and utterances to describe events that we perceive. The meaning of a word is typicall1 thought of
as conditions on its appropriate use. It thus seenis natural to relate the meaning of a word such a's
throw to a procedure for detecting throwing events. Many scheines have been proposed for represent ing
the meanings of words and utterances (cf. Miller. Schank. Jackendoff, and Pinker). I will show that
these schemes cannot be takon as procedures for recognizing the events that they attemll)t to describe
because they lack the notions of support.. contact, and attachment. Accordingly. I propose a different
representation scheme that incorporates these notions into definitions of word meanings. The cent ral
focus of this work is the ability for recognizing events by grounding the noteions of support, conitact, and
attachment. Therefore, the representation scheme developud here exaggerates the role played by these
notions.

For the remainder of this chapter, I will discuss the meanings of a number of spatial motion verbs. I
will show how prior definitions proposed for these verbs cannot be used as, event recognition procedures.
For each verb I will then propose an alternate definition that highlights the role played by the notions
of support. contact, and attachment in characterizing the events described by that verb.

Consider the word throw. The Random House dictionary (Stein et al. 1975) offers the following
definition for throw.

throw v.t. 1. to propel or cast in any way esp. to project or propel from the hand by a
sudden forward motion or straightening of the arm and wrist
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Thiis definition l~lcollrist's twoV) eo''1 , geiieral condiltionl andt!;a in-orte pruilit \lcal ,il iiatlll~n KH l II it

t lltee. liowvt~er. aditit vleli .vn Ii ()it,- wotildflll 11)1i)rmall% cmtlsder I' (beo I hlmruIli-- c%, enils.' or inll- mil)
ro)llinlg a bow~lig Ihall dmvwn a Imwiwliig lanec. A sitgh at a l Iliwiig, ;1114'% ( b.At ,~ail I dos)II ill , I Ilir IIlalIls

Miller ( 1) 35) ()ItIvrs I lhe 64luwiiig tletimii lull 1'(r lb rotc

to apply forcte by lliaun to ca~use to bligin to tratvvI through air

At first glancv, it appevars that Miller 1s aileliipt Ing I') v)aptnie tillu lull on )I' uppri h1r.,u.01 ill

stat elielii tbrotigliair. We in ight take lit- stat ivietit through airwIlt asl lterally mci tlilgI rng i
which wouldl admit suppl))rteul moilonl thlroti~gl flit, air. hult avs aI Al(ss 1*)r fIllll reI111i il l(i
elsewhere Miller grotips thirougli air alonig wvithI through wateir aud~ on land ;sI he ))ll ) micutil ot

mot01ion. Miller delit-i iies Uj as to travel througli wate-r (p. 351 ) ;tll titlk as to traveil on landi by
fo~ot (p). 3-15). Furthiermiore. as We, Shall see. thle glosse's gl\eIl 1) Mliller IFur i her wo-(rds wbose, iletli liltlulls

require lOe not1ion ot support do iiot inicorporat e flie, througli air prilitit R.

Scliaiik offlers flthe filowing two defiuijtionls fo r throw.

Xi throw/Z i t Y: X ulIioulvi-- z )

x
x

IIz

x Y

'Fle first (lescrihes t hrowing as p~ropellinig alit ob~ject Z onl a path Iiroiii I lie agent N\ to til lie (151ilat 1)411 V.
'Fil secondt appears to add f lie, st atemienlt t hat Z must actliiall\V reach Y to ht. thrown to Its, dest iliat ionl
Neit her of t hese definition s moion fti lit 1114'tllsuporte~ Ia ture of the' resulltinig moti1m4)1

.Jackeiidoff (p). 175) offers t he h'ollowing gloss for tit( st atemlent IPt t/ hr' u i/uJh bll/ out lh, wnudowr.

('AtSE(Bc~thi. I (ball.0 U'I(wind~ow)))

While Ini this example. thie 1lt1suipp1 ortedl natulre of thle result jug miot ion is Implied b)\ thle fact that tIlc
hall is being thrown out the window. 1101 lun inl flt, represent ation)1 conve%-s t his inforumation1. If' olle

takes I AU SE( x,G ( 0 . _-) ) as thle mieaning of tb rot. this definiiit ion admuit s muall iiv 101-I Irowing veleiits.

Pinker (p). 218) offers thle following definition for the word throir via thle gloss for thec stat etieit Bob
thr~i tr t boi- to Bll.')

IFor t vP),l)grajphicaI reasi 's. I hiave m4)111111 tie' 1 141)4-I i)) llt) (l4if Piii1'ikei-., 1-presentIall' uni. it is mot r.'Icvan
t)) the culrrent dtisclissic~. 1114Th unetlid for amhi)'al ing effet'- andl fijr/tn braniches is alte4redt s)4iwh~at ms well. again for
typo~graphical reas ills.
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GO 11llN(; PATH1
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TO THIING
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This gloss enicalpsulate's tiliet' distintiton bet weeni throwing and lion-throwing events ill thle mjannler at -
tribute -'thlrowitig" Sinice t his is atlliiiinterlpreted 5'tiiil)O it offers litii ht elpt iiil ulding ai pocPvhiil
for recognizing thbrow ing events.

Ilii short, none of tile represent at ion schiemies proposevd by MIiller. Sclianik. .1ackendoff anti Piniker
contain a primitive for tdescribinig support. Thuis ili thlese schiemies. one- could not reformiulate better
definitions, around thet not ion of' support withlout adldinig such a prituilt ve. Pinker (1p. 201) gives t it
following definition for the word support

SUtJ)Jort:

STXFLE

M('T THIlNG 'VHING prevenit
[J1 vY EVEN -r

C.6 rHING PATH
Y I

downi

but does not recognize the need to incorporate this st~ruct ure as part of the definitions of other words
which depend oil support.

'[le defitnit ions for thirot giveni by Schank. J ackendoff. aiid Piniker also (10 not tnent ion thle role played
by one's hand inl t hrowitig anl object. N umierous non-thlrowing events such as kicking, or bumpinig ilto

anl object causing it to fall, would sat isfy the above deffinitions even thbough they are not prototypical
throwinig events. Randomi House atnd Miller at tiipt. t~o captunre this requirement via the( st atenim ts
'from the hand' or by liand. Even these (10 not express the notion that prototypical thlrowing inivolves
grasping aii olbject and subsequently releasing it. CIombined with not specifyinig unsupported motion.
not specifying this grasping-releasing transitilon allows all of the definitions for thmro given by Miller.
Schank. .Jackendoff. allid Piniker to admit many non-throwing events such as pushings. pullings. aii(l
carryings. Ini fact, even tilte Randomi House (leffititioti would suffer fromi this prloblemi were it not for the
words 'or cast' appended to 'prop~el inl its definiition for throw.

Ini cont~rast. I propose the following alternative definition for thr-ow.
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(define throw (x y)
(exists (i j)
(and (during i (move (hand x)))

(during i (move y))
(during i (contacts (hand x) y))
(during i (attached (hand x) y))
(during j (not (contacts (hand x) y)))
(during j (not (attached (hand x) y)))
(during j (move y))
(during j (not (supported y)))
(= (end i) (beginning j)))))

Informally, this states that a throwing event comprises two consecutive time intervals i an(d j, where
during i, both .'s hand and y are moving, and x~s hand is in contact with and attached to y, while
during j ,r's hand is no longer in contact with and attached to y, and y is in unsupported motion.
Note that this definition incorporates the grasping and releasing action of the agent followed by te
unsupported motion motion of the patient, aspects of throwing not captured by the definitions advanced
by Miller, Schank, Jackendoff, and Pinker. 1 will not formally define the notation used for defining
words. In fact. I have taken some liberty with the notation. sacrificing precision in favor of expository
simplicity. What I hope to convey, however, is the belief that if one could ground the not ions of support,
contact, and attachment,, in addition to movement, one could use the above definition as a procedure
for perceiving throwing events.

I should stress that I do not advance such a definition as embodying the necessary and sufficient
conditions for the use of the word throw. Even ignoring metaphorical and idiomatic uses, the word throuw
can be extended to a variety of situations. The above definition attempts to describe only prototypical
throwing events. It is a well-known philosophical quagmire to attempt to formally circumscribe the
meaning of a word or even to characterize prototypical events and their extensions. To avoid such
difficulties, I will simply say that the definitions presented here try to capture our intuitive notions of
the events they describe, better than prior representations. I offer no way to substantiate this claim
except for the projected eventual success in using these definitions as part of an implemented computer
program to accurately differentiate occurrences from non-occurrences of the event.s they describe in
animated movies. Since the implementation of that program is still underway, I can only hope to
convince the reader that the mechanisms I propose in part II of this thesis show some actual promise
of achieving these aims. One should note that neither Miller, Schank. Jackendoff, nor Pinker offer any
better substantiation of their respective representation schemes.

I also want. to point, out, a number of issues pertaining to the above definition and others like it. First.

it does not specify precisely when the throwing event occurred. For most verbs like throw, it is unclear
whether the actual event described spanned both i and j, just i or j, some portion of either i or j. or just

the transition between i and j. The notation intentionally leaves this question unanswered in the absence
of suitable criteria for determining the appropriate solution. The intention is to interpret the notation
as stating that. the event occurred sometime during the interval spanning i and j given that the criteria
for i and j are met.. Second. the definition does not express certain other notions that we intuitively
believe to be part, of throwing events. For instance, .r's hand imparting force to y during i. or that force
causing the unsupported motion during j. Clearly notions such as force application and causality play an
important, role in the meaning of most spatial motion verbs. I leave such notions out of definitions simply
because I do not yet know how to perceptually ground them. Section 10.2 will offer some speculation
on how the methods described in part, I1 of this thesis can be extended to support perception of force
application and causality, allowing such notions to be included in revised definitions for verbs like thromi.
Finally, the above definition contains redundant information. Stating that x's hand is attached to y
during i implies that. it, contacts y during that interval as well. Likewise, stating that x's hand is moving



dulrinig i. while it Is attached to ' I/ itiijlit-s thait y/ iiiiist also lie, iio% ilg durinig Ihat ilc~l Y111- liernorr.
sta ni thatijis uiisupptd (irilig J uiiplies t hat hrlanid is twit'ther in conitact wi thI. nor attIahced to,

y during that interval. I Include such redundanit iiiforiiiat ion foJr two reasons. F irst. it iiia, allow iliorc
robust de-tection of events given unreliable pritnitive.s. Second. the redunidanit lrotol vpical definit ion I,
mnore suitable for extension to non-proltet pical situnat ion-,. For exainiple. thlrowing that doe,, not itivolv
unistupported niot ion of an object still involves the release of thal object at sonie point dunrinig IL,' in~tiou]
Perhaps soniii varianit of st ructutre mnapping (( eiitner 1 983, Falketilainer et al. 1 9(S9) applied to '11ic11
redundant delianitions can loriti a basis for generalizing prot otyvpt, defintittion, to idiojiuat ic. linet a horical.
and other ext ended uses ( cf. Lakoff 1987).

' ting these and mnany other subtleties aside thlen, let us exainiiie somne oilier verbs for w hichI
support. con tact. an(l at taclitient play at jinportalit role. ( 'onsider the verbs fall. drop. boan flu and
jurnpj. Miller (p). :357) gives the following (definuitiolns for these words.

fall: to travel downward
dIrop: to cause to travel downward
bounrc: to travel up and down

jumip: to travel over

These dehinit~ioiis seemi tot. t~o accurately capture the ineatlitgs of these words sinuce they- lack the ntot ion
of support, contact, and attachmnent. Falling is unsupp~ort ed mnotion. One is 11o1 falling when one 'IS
walking down stairs. Droppinig miust result in falling. One, Is not dropping a tea cup when one, is gently
placing it onto Its s',aucer. Furthermiore, not ,just any causation of falling counts as dropping. P~ushinig
or knockitng an object off a ledge is not dropping that object . lDropping an object requires t hat the
agent previously grasp. or at least. support.. that object prior to its falling. Botuncing s eenis to Involve
tremporary contact miore than up-and-down mnotion. One cati bounce a ball hiorizotit ally against a wall.
Ftirt hermiore, not all uip-and-down miotion is bouncing. A book is not bouncing when one, picks it up
and] put~s it dlown~ somiewhere else. .Juuniping too. seemns to involve support. in part ictular a self-induced
state change fromi being supported to being unsupported, typically incorporat ing uipward niot ion. One,
needl not travel over soinething to successfully. jump.

Schank gives the following definitions, for fall and] drop.

ground

X fall: nif =PROPEL 0-Z 4E
X RASP---Z

X drop Z: grotund

nf,ýPRO PEL - ('z- C 1)

These require only that -nf'. the natural force of gravity, propel ami object toward the grouitdl and do
not reqhtire the object to be unsupported. They. adinit a situtat ion where one, is lowering a buicket into a
well as a case where one dropped the btucket and it is falling.

InI contrast. I propose the following definitions for the verbs fall, drop, botinu. and jumip.

(define fall Wx
(exists Wi
(and (during i (not (supported x)))

(during i (move-down x)))))
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(define drop (x y)
(exists (i j)
(and (during i (contacts (hand x) y))

(during i (attached (hand x) y))
(during i (supports x y))
(during i (supported y))
(during j (not (contacts (hand x) y)))
(during j (not (attached (hand x) y)))
(during j (not (supports x y)))
(during j (not (supported y)))
(during j (move-down y))
(= (end i) (beginning j)))))

(define bounce (x)
(exists (i j k y)
(and (during i (not (contacts x y)))

(during j (contacts x y))
(during k (not (contacts x y)))
( (end i) (beginning j))
( (end j) (beginning k))
(short j))))

(define jump (x)
(exists (i j)
(and (during i (supported x))

(during j (not (supported x)))
(during j (moving-up x))
(= (end i) (beginning j)))))

Intuitively. these definitions state that falling involves unsupported downward motion, that dropping
involves releasing a previously grasped object allowing it. to fall, that bouncing involves temporary
contact and that jumping involves the transition from being supported to unsupported upward motion.
Again, they are not meant as necessary and sufficient conditions on the use of these words, only a-s
descriptions of prototypical events. More importantly, they can be used as procedures for recognizing
occurrences of the events they describe.

There seems to be no single unified notion of support.. The intuitive concept of support. breaks down
into at least three variant notions, each corresponding to a different way an object can fall. An object
can fall straight downward, fall over pivoting about a point beneath its center-of-mass, or slide down
an inclined plane. Whether or not an object is supported in one way. preventing one type of falling.
may be independent of whether it. is supported in a different way. Figure 7.1 illustrates several different
potential support, situations for an object. In figure 7.1(a), the object is totally unsupported and will fall
down. In figure 7.1(b), the object is prevented from falling down but will fall over. In figure 7.1(c), the
object is prevented from falling down but, can either fall over or slide. In figure 7.1(d), the object will
neither fall down nor fall over but. will slide. In figure 7.1(e), the object is totally supported and will not
fall down, fall over, or slide. Difference in type of support appears to play a role in verb meaning. For
instance, throwing seems to require that an object be able to fall down, or at least fall over, as in Th(
wrestler threw his opponent to the floor. An event, is not throwing if it results in unsupported sliding
motion. Similarly, falling, dropping, and jumping most prototypically involve the ability to fall down
but may be extended to cases of falling over and perhaps even to sliding. Other verbs are sensitive to
this distinction in different ways. For instance, the verb lean on can be used only to describe situations



(a) (b) (c) (d) (e)

Figure 7.1: The different, varieties of support relationships. In (a). the object is totally unsupported
and will fall down. In (b). the object is prevented froin falling down bdt will fall over. In (c). the
object is prevented frorn falling down but can either fall over or slide. In (d). the object will neither
fall down nor fall over but will slide. In (e), the object is totally supported and will not fail down.
fall over, or slide.

where one object prevents another from falling over, and not when one object prevents another front
falling down. One is not leaning oln the floor when one is standing on it.

Consider now the verb put. Miller (p. 359) defines put as to cause to travel. Jackendoff (p. 179)
offers

CAIUSE(nman. GO(book, TO ON(table)))

as the meaning of Thf man put thf book on th/ labhc. Pinker (p. 180) gives the following fragment of a
definition for put.

put:

EVENT

GO THING PATH
[1 []

to PLACE

All of these definitions involve causing an object to move to a destination. Such a definition is overly
general. Jackendoff's expression would be true of an event, where the man knocked the book off the
shelf onto the table, yet one would not, say that lie put the book there. Put seems to require the ability
to control the precise final destination of an object.. One does not usually have such control when one
throws or kicks an object, so one doesn't use the word put to describe such situations. One way to
achieve greater positional control is by grasping or otherwise supporting an object while moving it.
Furthermore, positional control is achieved only if the object is supported at the end of the plt event..
This support must come from something other than the hand which moved it. Otherwise. it has not
yet reached its final destination. These aspects of pul, at. least, cail be captured using the machinery
described here with the following definition.



112 CHAPTER 7. LEXICAL SEMANTICS

(define put (x y)
(exists (i j z)
(and (during i (move (hand x)))

(during i (contacts (hand x) y))
(during i (attached (hand x) y))
(during i (supports x y))
(during i (move y))
(during j (not (move y)))
(during j (supported y))
(during j (supports z y))
(not (equal z (hand x)))
(= (end i) (beginning j)))))

Similarly, the prototypical event described by pick up can expressed as essentially the inverse operation.

(define pick-up (x y)
(exists (i j z)
(and (during i (supported y))

(during i (supports z y))
(during i (contacts z y))
(during j (move (hand x)))
(during j (contacts (hand x) y))
(during j (attached (hand x) y))
(during j (supports x y))
(during j (move y))
(not (equal z (hand x)))
(= (end i) (beginning j)))))

Many other simple spatial motion verbs also apparently involve support. Consider carry and raise.
Miller (p. 355) defines these words as follows.

carry: to cause to travel with self
raise: to cause to travel up

Jackendoff (p. 184) defines raise as

CAUSE(z, GO(y. [Path UPWARD, :])).

One would say Larry Bird raised the ball into the basket to describe a layup but, not a jump shot even
though he has caused upward motion of the basketball in either case. One must be continually supporting
an object, perhaps indirectly, to be raising it. This holds true even more so for the verb lift. Likewise,
one is not carrying a baby stroller when one is pushing or pulling it, even though one is causing it to
travel with oneself.2 The statement. Don't drag that box. carry it! would be infelicitous if the prototypical
carrying event admitted dragging. Accordingly, I offer the following alternate definitions for carry and
raise.

(define carry (x y)
(exists Wi)
(and (during i (move x))

(during i (move y))
(during i (supports x y)))))

2
The Halakhic concept of -10T1 not withstanding.
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(define raise (x y)
(exists Wi)

(and (during i (supports x y))
(during i (move-up y)))))

The verbs described so far highlight the need for support in their definition. Support is not tlh only
crucial component of verb meaning. ('ontact and attachment also play a pivotal role. This is illustrated
in the simple verbs slide and roll. Pinker (p. 182) offers the following representations for the intransitive,
use of roll.

roll: roll:
EVENT EVENT

GO THING MANNER GO THING PATH MANNER
"[] ".rolling" [] [H] "rolling"

The uninterpreted manner attribute offers no guidance as to the perceptual mechanisms needed to detect
rolling and thus to define the meaning of the word roll. A proper definition of rolling can be based on a
definition of sliding since rolling occurs when sliding doesn't. One object slides against another object
if they are in continual contact and one point of one object contacts different points of the other object
at different instants. Although the notion of one object sliding against another can be represented in
the notation used here, by reducing it to primitives that return the points of contact between objects, I
prefer instead to treat slide-against as a primitive notion much like support, contact, and at tachnijent.
I conjecture that the human visual apparatus contains innate machinery for detecting sliding motion
and suggest that experiments like those performed by Freyd and Spelke. to be described in sections 8.3
and 9.5, could be used to determine the validity of this claim. Given the primitive notion slide-against.
one could then define the intransitive verb slide as follows.

(define slide (x) (exists (i y) (during i (slide-against x y))))

Rolling motion can then be described as occurring in any situation where an object is rotating while it
is in conta(t with another object, without, sliding against that object.

(define roll (x)
(exists (i y)
(and (during i (not (slide-against x y)))

(during i (rotate x))
(during i (contacts x y)))))

Accurately representing the transitive uses of slide and roll, however, requires the notion of causality.
Since this thesis does not, offer a theory for grounding the perception of causality, I will not attempt
to formulate definitions for these transitive uses. It is interesting to note, however, that despite this
inability for describing causality, many verbs described so far are nonetheless causal verbs. They can
be described fairly accurately without recourse to causality due to the availability of other cues such as
support, contact, and attachment.

So far, the primary use of the notion of attachment has been to describe grasping. Levin (1985. 1987)
suggests that there is an entire class of verbs of attachment including attach, fasten, bolt, glue. itail.
staple .... I want to suggest another potential role attachment might play in verb meaning beyond
the class of these kind of attachment verbs. Two other verb classes suggested by Levin include verbs
of creation and verbs of destruction. The typical way of representing such verbs is via a change in the
state of existence of some object. Thus Schank proposes the following definitions for make and break.
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Xc=:•DO

X makf Z: ir

Z 4 BE
X4==*DO

X break: ir
Z 4==broken

To the same end, Jackendoff proposes the existential field and primitives like GOEx1 ,, and [EX]. Sinilarly.
Pinker offers the following definitions for makf (p. 223)V

make:
EVENT

ACT THING THING effect
[X] [Y] EVENT: existential

GO THING PLACE
Y

at EXISTENCE

and break (p. 206).

break:
EVENT

ACT THING THING effect
[1 [Y] EVENT: ident

GO THING PPOPERTY
Y . ,roken"

Like uninterpreted manner attributes, a symbol like [EX] offers little guidance in grounding the concepts
of creation and destruction. While I do not. suggest, that we are anywhere close to being able to fully
ground these concepts, the notion of attachment may allow a modest start in the right direction. Objects
are constructed from components that, are typically attached to each other to form the aggregate parent
object. One can make an object by forming attachments between appropriate components. One can
break an object by severing those attachments. Chapter 8 describes how ABIGAIL models objects as
collections of attached line segments and circles. Attachments between line segments and circles can be
made and broken during the course of the movie. ABIGAIL can track the formation and dissolution of
attachment relationships dynamically during event perception. This is how ABIGAIL can detect. graspings
and releasings. This same mechanism can be used to determine that a new object has been constructed

3I have omitted the benefactive component of Pinker's original definition as it is tangential to the current discussion.
Pinker also phrased the original definition as a gloss for the utterance Bob made a hat. I have replaced the tokens (Bob)
and (hat) from the original gloss with the variables X and Y.
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out of some component,. or that an object has heenl broken innto it, pieces. Suc Ih lov-level noutio.-, maa
form the basis of more complete explanations for creation and de.t trucion by wa, of a long chain of
analogical reasoning. Whether such speculation leads anywhere, remaini for fit ure reevarch.

As a final example, I will present the definition of a %erb that i, svenningly percpt mallN iiuch more
complex. Schank gives the fbllowing definition for wal/k.

X

MOVE
; o

X icalk to Z: X4==>PTRANS 0 X feet Of X

This definition, however, admits running. hopping, skipping. jumping, skatiiig,. and bicycling events.
We can consider walking to involve a sequence of steps. Each step involves lifting up some foot off the
ground and placing it back on the ground.

(define step Wx)

(exists (i j k y)
(and (during i (contacts y ground))

(during j (not (contacts y ground)))
(during k (contacts y ground))
(equal y (foot x))
( (end i) (beginning j))
( (end j) (beginning k)))))

In addition to stepping, walking involves motion. Furthermore, two conditions can be added to distin-
guish walking from running, hopping, skipping. and jumping on one hand, and skating on the other.
One stipulates that at all times during walking. at least one foot must be on the ground. Th, second
stipulates that no sliding takes place.

(define walk Wx)

(exists Ci)
(and (during i (repeat (step x)))

(during i (move x))
(during i

(exists (y)
(and (equal y (foot x))

(contacts y ground))))
(during i
(not (exists (y)

(and (equal y (foot x))
(slide-against y ground))))))))

Taken together. this is a fairly accurate description of walking.
All of the discussion so far has focussed on using semantic representations for event perception. The

ultimate goal of this research, however, is to link language with perception using the architecture from
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igure 6.2. For a seniant ic representation to act a• an al)propriate bridge beltween thn' linguistic and
non-linguistic halves of this architecture. it intist siniult aliwously ileet criteria uinposed b% Iht h halves
Linguistic processing imposes a strong conistraint sot addresse•( so far. It i nust be, possible to specilf a
way for conibining representations of thlie meanings of words to forit lhe representanion of the inealniig
of an utterance coniprising those words. Such a process in) called a linking rule. Th'1 Choice of linking
rule depends on lthe reprewnliation used. A linking rule appropriate for onie rep)resentation niight not
be suitable for another. Jackendoff. Pinker, and Dorr ( 1990a. 19901b) adopt a ,ubstitut iot-based linking
rule. With this rule, word meanings are taken to be expressions wit I variables acting as place holders
for a word's arguments. 'The uieaning of a phrase is composed by taking some conit it Gent in t hat phrase,
as the head and substituting the ineanings of the remaining constituents for variables in lbe head",
meaning. Figure 7.2, illustrates an example application of this linking rule. This rule can be thbought
of simply as 3-substitution. one of the rewrite rules Introduced as part of tlie A-calculus. \Vhilt, stuch
a linking rule is suitable for Jackendovian representations aiid its derivatives used by Pinker and l)orr.
it is unsuitable for the representation proposed here. 'This can be illustrated by the following exanipl'.
Consider the utterance John dropp(d th/ book on the floor. For simplicity, let's take the menanings of
John. th/ book, and the floor to be john, book. and floor respectively. Earlier. I took the meaning of
drop t~o be as follows.

(define drop (x y)
(exists (i j)
(and (during i (contacts (hand x) y))

(during i (attached (hand x) y))
(during i (supports x y))
(during i (supported y))
(during j (not (contacts (hand x) y)))
(during j (not (attached (hand x) y)))
(during j (not (supports x y)))
(during j (not (supported y)))
(during j (move-down y))
(= (end i) (beginning j)))))

While one could apply simple substitution to link john with .r and book with Y. that technique, will
not work with the prepositional phrase on the floor in the above utterance. The desired expression to
represent the meaning of the entire utterance would look something like the following.

(exists (i j K)
(and (during i (contacts (hand john) book))

(during i (attached (hand john) book))
(during i (supports john book))
(during i (supported book))
(during j (not (contacts (hand john) book)))
(during j (not (attached (hand john) book)))
(during j (not (supports john book)))
(during j (not (supported book)))
(during j (move-down book))
(DURING K (CONTACTS BOOK FLOOR))
(DURING K (SUPPORTS FLOOR BOOK))
(DURING K (SUPPORTED BOOK))
( (end i) (beginning j))
(= (END J) (BEGINNING K))))
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John slid 1hk cup from M1ary to Bill.
('A USE(Johu. GO(cup, [Path FRONI(Mary). TO(Mary)]))

John slid tht cup from Mary to Bill
John CAUSE(x. GO(cup,[pat, F ROM( Mary).TO(Mary)]))

.slid lhe cup from Mary to Bill

CAUSE(.r,GO(y, [Path u, t])) cup FROM(Mary) TO(Bill)

I/u cup from Mary to Bill
1 cup FROM(x) Mary TO(x) Bill

Figure 7.2: A derivation of the meaning of the utterance John slid tht cup from Mary to Bill from
the meanings of its constituent words using the linking rule proposed by Jackendoff.

While it is unclear what to take precisely as the meaning of the preposition on. what it does structurally
in the above example is contribute a new interval k to the existential quantifier, some added conjuncts
describing support and contact relationships between the book and the floor, and an added conjunct
to temporally constrain the new interval relative to prior intervals. These additions appear in upper
case in the above semantic representation. Whatever we take as the meaning of on thb floor. it is not
a piece of structure that is substituted for a single variable in some other structure. Furthermore. the
new structure contributed by on the floor must. itself have variables which are linked to elements such
as book from the structure to which it is linked. Thus substitution-based linking rules are not suitable
for the type of representation discussed here.

There is much talk in the linguistic literature about. linking rules which are claimed to be innate and
universal (cf. Pinker 1989). Such claims can be valid only if the actual semantic representation used by
the brain is of the form that allows such linking rules to apply. These claims must be re-, ised if it turns out
that the semantic representation must be more like that discussed here. Consider the following example.
A common claim is that a universal linking rule stipulates that agents are subjects. An additional
claim is that the first argument to the CAUSE primitive is an agent (cf. Jackendoff 1990). Using
extensions that will be described in section 10.2, the primitive notion (supports x y) can be viewed
as something like (cause x (supported y)). In this case, x would be an agent and thus would be a
subject. Consider however, the utterance John leaned on the pole. In the representation considered here,
this would correspond to (supports pole john), or equivalently (cause pole (supported john)).
This would require pole to be an agent and thus a subject. contrary to English usage. Thus the claimed
universal linking rule and the semantic representation considered here are incompatible. The universal
linking rule can be valid only if we find a compatible representation which also allows grounding meaning
in perception.

Borchardt (1984) recognizes the need to incorporate the notions of support, contact, and attachment
into procedures for recognizing simple spatial motion events. He describes a system that recognizes such
events in a simulated micro-world containing a robot. hand and several objects. That system receives the
changing coordinates of those objects as input. Figure 7.3 illustrates several event recognition procedures



suggested bN Borchardt for that mnicro-world. While his definitions and niotationi diffler in spetcific details
fromn the defl lit ionS and( nlotatrionl s-uggeSted here. we share lhe same Intent of describing spatial inoiol o
event~s using the notiomns of support. cold act. andl alttachment. The mi ajor d ifferenice I., that Borclhardt',
systemi receives thle changing support. conitact, anld aittachnient relat ioniships b~t wt~eII ob ject s a., in1P11
while ABWIL i infers such relat jotiShIpS from lower- level perceptunal input.

To sunmnarize. this chiapt er has advanced the claim that the lnotions of s~pport, con Iact, alld attachi-
itient play a central role in defining the mneanings ol numterons simpjle spatial motion verbs. 'Iliese not [ils
are necessarv to construct procedlures which can differenitiate between occunrrenices and nonl-occn rrelict,
of prototypical events which these verbs describe. I have shown how prior lexical senikant ic represell-
tations lack the ability for representing these [lotionts, and are thlus incapable of' miaking lhe requisilte
(list illctions. Furthermiore, I have proposed an alternate representation which not oiilv iliorlporate-s I hese
[notions intto verb dlefinitions, but does so in a prominent fashion. 'This niew represelt atolloi is uiseful 01INl
if one can show 11ow to ground the nlotions of support. contact, and at tachmnent ill xisnal percept ionl
Trhe next two chapters w~ill propose a theory of how suchl grotnding may work.



(defun slide (a b) p. P1

(and (dsupport table a)
(translate a)
(not (roll a))))

(defun roll (a b) p. 99
(and (dsupport a)

(daupport a)
(translate a)
(or (isa a ball)

(and (isa a cylinder)

(perpendicular i (heading a i) (orientation a p i))))))

(defun fall (a) p. 99

(and (< (ddt (position a z)) -10)
(not (exists i hand (control i a)))))

(defun bounce (a b) p. 10.;

(and (moveaway a b)
(hit a b justbefore (start (moveaway a b)))

(< (abs (ddt (velocity b))) 3)))

(defun control (a b) p. I8

(and (not (dsupport table b))
(or (hold a b)

(support a b)
(exists i object (and (hold a i) (support i b))))))

(defun raise (a b) p. I08

(and (control a b) (< (ddt (position b z)) -0.5)))

(defun pickup (a b) p. 110

(and (lovefingers a)
(not (control a b))
(at (ever (control a b)

(start (and (movefingers a) (not (control a WM

(next (stop (movefingers a))))))

(defun setdown (a b) p. 110

(and (movefingers a)
(control a b)

(at (ever (not (control a b))

(start (and (movefingers a) (control a b))))
(next (stop (movefingers a))))))

(defun drop (a b) p. 110

(and (fall b) (justbefore (control a b) (start (fall b)))))

Figure 7.3: A selection of representations of verbs used by Borchardt to detect occurrences of events
described by those verbs in a simulated blocks world with a robot arm. The page numbers indicate
where the representation appeared in Borchardt (1984).



120 (CHAPTER 7 LEXI 'AL SEA.ANTI('S



Chapter 8

Event Perception

InI chapter 7. 1 argued that the notions of support. contact, and attachment play a central role iii defining
the meanings of numerous spatial motion verbs. If this is true. the ability to perceive occurrences of
events described by those verbs rests on the ability to perceive these support. contact. and attachment

relations. In this chapter 1 advance a theory of how this inight be accomplished. The central claim of
this chapter is that support. contact, and attachment relations can be recovered using counterfactual

simulation, imagining the short-term future of a potentially modified image under the effects of gravity
and other physical forces. For instance, one determines that an object is unsupported if on, imagines
it falling. Likewise. one determines that an object A supports an object B if B is supported. but

falls when one imagines a world without A. An object .4 is attached to another object B if one mnust
hypothesize such an attachment to explain the fact that one object supports the ot her. A similar, though

slightly more complex. mechanism is used to detect contact relationships. All of the mechanisms rely

on a modular imagination capacity. This capacity takes the representation of a possibly modifid image

as input, and predicts the short-term consequences of such modifications. determining whether some

predicate P holds in any of the series of images depicting the short-term future. The imaginatioin capacity

is modular in the sense that the same unaltered mechanism is used for a variety of purposes, varying
only the predicate P and the initial image model between calls. To predict the future. the imagination

capacity embodies physical knowledge of how objects behave under the influence of physical forces such
as gravity. For reasons to be discussed in chapter 9, such knowledge is naive and yields predictions tihat

differ substantially from those that accurate physical modeling would produce. Section 10.2 speculates

about how the imagination capacity might also contain naive psychological knowledge modeling the

mental state of agents in the world, and how such knowledge might form the basis of the perception
of causality. Chapter 9 discusses the details of the mechanism behind the imagination capacity. This

chapter first presents a computational model of how such a capacity can be used to perceive support.

contact., and attachment relations, as well as experimental evidence that sitggests that such mechanisms

might form the basis of human perception of these notions.

Certain notions seem to pervade human perception of the world. We know that solid objects cannot
pass through one another. This has been termed the substantiality constraint. We know that objects do
not disappear and then later reappear elsewhere. When an object moves from one location to another. it

follows a continuous path between those two locations. This has been termed the continuity constraint.

We know that unsupported objects fall and that the ground acts as universal support for all objects. 1
will refer to these latter two facets of human perception as gravity and ground plane. Section 9.5 will

review experiments performed by Spelke (1988) and her colleagues that give evidence that at least two of
the above notions are present in humans from very early infancy, namely substantiality and continuity.

This chapter. along with chapter 9, argues that substantiality, continuity, gravity. and ground plane are

121
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central iotitl.ons that govern Itlie operation of all ilnaginat ion capacity which is used t t reco•er SUtport,

coni act, and at tachmuent relat ions front visual input. Hico~erry (f t ihese relations iil turn. formiis tlie basis

of event perception and t lie grounding of language ih percept ion.

8.1 The Ontology of Abigail's Micro-World

Before pre'senting the details of a coillputatioinal model of' event percept ion. it is i.ecessar% to describe

the ontology which AHI;AIL uses to interpret the iniages shi is given as i11)lUt.

The real world behaves according to tlie laws of physics. leyond th,-ese laws. peopI1 pIr, ji ct ail

ontology onto the world. It may be a matter of debate as to wliich facets of our ferctiv'td world shouhl

be attributed to physics. and which to our conceptualization of it, bit such iphilosopIhical quest ions
do not concern us here. In either case, our world contains,. aniong (other things. solid obditects. "hs,

objects have mass. They arte located and oriented in three--dimensional cart esian space Solid objects

obey the principles of substantiality, continuity, gravity, alid ground plant., thfat is. solid obje'cts do
not pass through one another, they follow a continuous path through space when nioviiig between tw,

points, they fall unless thie are supported, and they are universally supported by the groiud. Subject

to these constraints (and perhaps others), solid objects call change their position and orientat ion, thlie
can touch one another, they can be fastened to one another, they call be broken into pieces. and those,

pieces eventually refastened to form either the samne object, or different objects. ( 'omi•lex objects can
be constructed out of parts which have been fastened together. The relative iiiotion of such parts Call

be constrained to greater or lesser degrees.

The aforementioned story is a small but importaint fragment of hiumnan world ontology. Oin this view.

we all share roughly the same concept ual framework, around which much of laiiguage is st ruct ure'd. 'l'lit

non-metaphoric meanings of many simple spatial motion verbs depend on this shai'ed ontology. ['or

exainple, the verb sit incorporates., among other things. the notion of support. which in turn is built

on the notions of gravity and substantiality. But this alone does not suffice. .;t! also incorporates thli
notion that our body has limbs as parts. that these linbs are joined to our torso, that these joints imipost.

certain constraints on the relative motion of our body parts. and these constraints allow us to assuni,'
certain postures which facilitate the support of our body. Furtherinore. many nouns such as chair derive

at least part of their meaning from the role t-hey play in events referred to by words like .sil. So a chair

tnust facilitate support of the body in the sitting posture. A little int.rospection will reveal that thlit
aforementioned fragnment is a necessary. and perhaps almost sufficient, ontology for describing nunmerous
word meanings, including those discussed iii chapter 7.

Like the real world, ABIGAIL's micro-world has all ontology, though this ontology is derived mostly

via projection of ABIGAIL's perceptual processes onto a world governed by very few physical laws. This

ontology is analogous to that of the real world though it differs ill some of the details. ABt(AICs micro-
world contains objects that have mass, and are located and oriented in a 2 ½-dimeinsional cartesian space.

These objects obey substantiality, continuity. gravity, and ground plane. They cani move'. touch, support.
and be fastened t.o one another. They call break into pieces and those pieces refasteiid. The relat ivt

motion of pieces fastened together call be constrained so that all object constructed out of parts cali

have a posture which carl potentially change over time. Most of the words discussed ii chapter 7 can bet

interpreted relative to the alternate ontology of ABIGAtIS inicro-world, rather than the real world. Such
a re-interpretation maintains the general conceptual organization of the lexicon in that a person would

use the same word sil to describe analogous events in the movie and the real word. Furthermore, tie
ontological analysis projected by ABIGAIL ont.o a sitting event in the movie is identical to the analysis

projected by a person watching a sitting event in the real world, e-ven thouglh thl' low-level prinlitives out
of which those analyses are constructed differ. This allows ABIGAIL's micro-world to act a., a simplified

though non-trivial testhed for exploring the relationship between language and perception.
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The aforemientioned ontology is not impldetemnted ill ABIGAIL as explicit declarative knowicdge. In-
slead, it is embedded procedurally iin an in magiation capacitjv to Ibe described in chapter 9. The ()t'nt
perception mechanisms described ill this chapter, and utimlately any language processing component
which these mechanisms drive, rely on this ontology through thlie imagination capacity. Athhough l•e on-
tology possessed by humans differs from tifs artificial ontology in it's details, if ilh general framework obr
event perception incorporated into ABIGAIl, is reflective of actual litiuinai eveint percept ion. t lin huiiian
event perception too must ultimately rely on a world ontology. I should stress that I relmain agnostic on
the issue of whether such an ontology--and the mechanisms for its use -are iniate or acquired. Nothing
in this thesis depends on the outcome of that debate. All that is assumed is that the ontology and
mechanisms for its use arc in place prior to the onset of any linguistic ability based oii the link between
linguistic and perceptual processes. A particular consequence of this assumpltion is the requirement
that the ontology and nmechanisms for its use be in place prior to tle onset of language acquisition.
since the models described in part I of this thesis rely on associating each input utterance with semantic
information denoting the potential meanings of that utterance recovered from the non-linguist ic conlext.

This ontology may be represented redundantly. and differently. at multiple cognitive levels. I find
no reason to assume that this ontology is represented uniformly iii the brain at a single cognitive level.
The representation used for imagination, a low-level process, might differ from representations at higher
levels. The ontology used for low-level imagination during visual perception may differ both in its
implementation, as well as its predictive force, from any other ontology we possess, iin particular that

which we discover through introspection. Different ontologies may be acquired via differenit means at
different times. Furthermore, it is plausible for some to be innate while others are acquired. To imie. in
fact, this seems to be the most likely scenario.

8.1.1 Figures

At the lowest level, the world that ABIGAIL perceives is constructed from figures. 1 will denote figures
with the (possibly subscripted) symbols f and g. In the current implement at ion. figures have one of two
shapes, namely line segments and circles. Conceivably, ABIGAIL could be extended to support additional
shapes, such as conic section arcs and polynomial arcs, though the complexity of the implenientation
would grow substantially without increasing the conceptual coverage of the theory.1

At each movie frame ABIGAIL is provided with the position. orientation, shape. and size of every
figure. Positions are points in the cartesian plane of the movie screen. I assume that the camera does
not. move. Thus an object. is stationary if and only if the coordinates of the positions of its figures
do not, change. The (possibly subscripted) symbols p and q will denote points. Each point 1' has two
coordinates, x(p) and y(p).

The position of a figure f is specified by two points. p(f) and q(f). For line segments. these are its
two endpoints. For circles, p(f) is its center while q(f) is a point on its perimeter. The orientation and
size of figures are derived front these points. Given two points, p and q. the orientation of the line from 1)
to q in given by 2

0(p),q) •=' tan-1 I'?(q) -- y(p).

x.(q) - x.(p)

The orientation of a figure, whether it, be a line segment. or a circle, is an angle O(f) = O(f).'A Throughout
the implementation of ABIGAIL, all angles 0, including the orientations of figures. are normalized so

1 In retrospect. even allowing circles unduly complicated the implementation eff,,rt. Little would be lost by allowing
only line segments, and modeling circles as polygons.

2 Actually. the Common Lisfanction (atan (- (y q) (y p)) (- (x q) (x p))) is used to handle orientation in all
four quadrants and the case where 0 is Z.2

3This implies the somewhat inrealistic assumption that circles have a perceivable orientation. The reason for this

simplification will be discussed on page 127.
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that -7r < 0 < -,r. Note that the leftward orientation is normalized to +r and not -7r. The reason
for this will be discussed on page 165. Axes of translation will be specified as orientations. (Given I h.
orientation 0 of an axis of translation, translation along the axis in the opposite direction is accomplished
via a translation wit lithe orient ation 0 -+-,r, suit aldy normalized. In a similar fashion. amounts of rot at ion
about pivot points will be specified via angles. If 0 denotes an amount of rot at ion in one direct ion then -0
denotes the amount of rotation in the opposite direction.

I will denote the distance between two points p and q as .X(p, q).

-.\(I, q) ! \/(.'(p) - x(q ))2 + (y(p) - y(q)-)2

The size of a line segment is its length. the distance A(p( f), q(f)) between its two endpoints. The size
of a circle is its perimeter: -,rA(p(f), q(f))2. Figures also have a mass. denoted re(f). which is taken to
be equal to their size. Figures have a center-of-mass. The values .r(f) and y(f) denote the coordinates
of the center-of-mass of a figure f. The center-of-mass of a line segment is its midpoint.

= *i(p(f)) + .r(q(f)).r(f) +

"2
,1(p(f)) + Y(q(f))

"2
The center-of-mass of a circle is its center: x(f) =- x(p(f)), y(f) =(p(f)).

I also define the notion of the displacement between a point and a figure. denoted 6(p, f). This will
play a role in defining joint. parameters in t lie next section. If f is a line segment. t hen

S(p. f)• "XPt()

A-(1 (f), q(f))

Such a displacement is called a translational displacement. Since displacemeents are used only for points
forming joints between figures, the point p will always lie on f and the displacement will always he

between zero and one inclusively. If f is a circle, then 6 (p. f) =- 0(p(f), p) - 0(f). Such a displacement
is called an rotational displacement and will always be normalized so that -,7r < b(p. f) < r.

8.1.2 Limitations and Simplifying Assumptions

At every movie frame, ABIGAIL is presented with a set .Fj of figures that appear in frame i. Several
simplifying assumptions are made with respect to the sets .i.

1. Each figure in every frame corresponds to exactly one figure in both the preceding and following
frame.

"2. ABIGAIL is given this correspondence.

3. The shape of each corresponding figure does not change from frame to frame.

4. ABIGAIL is given the correspondence between the endpoints of corresponding line segments in suc-
cessive frames. In other words, ABIGAIL is given the distinction between a line segment whose
endpoints are (p, q) ani( one whose endpoints are (q, p). This allows ABIGAIL to assign an unam-
biguous orientation to every line segment.

•5. ABIGAIL can perceive two concentric equiradial circles as separate figures even though they overlap.
ABIGAIL can also perceive two collinear intersecting line segments as separate figures. This means.
for instance, that when a knee is straightened so that the thigh and calf are collinear, they are still
perceived by ABIG;AIL as distinct line segments even though they may be depicted graphically as
a single line segment.
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('ollectively. thiese simiplifying assulp)t ions"' iuiply that ABI(.;AIL need oidy mataintain a singl, .vt F ( of
figures invariant over tinlie. OIly the coordiinates of the points of the figures (-all change fro(n frameit,
to fraine. T'hlese assunmptions also imply several rest ric ions on ABIGAIlt.'s ontology. First. mdiividual
figures are never created. destroyed, split, fused, or b)ent. This is not a severte restlicttionl since tigure,
are only the atomic elements out of which objects are constructed. Objects. being sets of figurts. can
nonetheless be created, destroyed. split, fused, or bent by changing the attachnment relationships bet ween

the figures constituting those objects. Second. figures cannot appear or" disappear. They can never enter
or leave the field of view and are never occluded. Since objects are composed of figures, this imtplies that
objects. as well, never enter or leave the field of view. While from a very early age. infants possess the
notion of object permanence. such a notion has not yet been incorporated into ABIGAIL. T'iis severe
restriction will not be addressed in this thesis. Finally. these assumptions imply that ABIGAIL is given
the continued identity of objects over time.

Object perception call be broken down into three distinct tasks: segmentation, classification. and
identification. Segmentation is the process of grouping figures together into objects. (lassification is
the process of assigning a type to all object based oti its relation to similar objects. Identification is
the process of tracking the identity of an object -- deterinining that some object is the same as one

previously seen. This thesis currently addresses only segmentation. The per-frante analysis discussed in
section 8.2.1 is a novel approach to image segmentation based on naive physical knowledge. Extending
this approach to address object. classification and identification is an area left for future research.

It is possible to relax the assumptions that ABIGAIL be provided with lhe figure and endpoint
correspondences (assumptions 2 and 4 from above), and have her recover such correspondences herself.
provided that such correspondences do exist. to be recovered and the remaining assumptions still hold.
One way to extend ABIGAIL to recover the figure and endpoint correspondences would be to choose a
matching that, paired only objects of the same shape. and choose the matching that minimized the suin
of the distances between the points of the paired figures. If the frame rate is high enough relative to
object velocities, a simple greedy optimization algorithm, perhaps with some hillclimbing. should suffice.
This approach would be a simple first step at, addressing object identification. It has not been attempted
since it is tangential to the main focus of this work.

Many of ABIGAIL's perceptual mechanisms are phrased in terms of the notions intersect, touch, and
overlap. Two figures intersect if they share a common point. Two line segments touch if they intersect
at a single point and that intersection point, is coincident with an endpoint of one of the line segments.
Two circles touch if they intersect at a single point. A line segment and circle touch either if the line
segment. is tangent to the circle, or one of the two possible intersection points is coincident with an
endpoint of the line segment. Two figures overlap if they intersect but do not touch, except that a
line segment, and a circle can both overlap and touch if one intersection point is coincident with an
endpoint of the line segment while the other is not. Figure 8.1 gives a pictorial depiction of these not ions
and enumerates the different possible relations between two figures. The left hand column depicts the
possible relations between two line segments. The center column depicts the possible relations between
a line segment and a circle. The right hand column depicts the possible relations between two circles.
Cases (a) through (Ii) depict touching relations. Cases (i) through (k) depict overlap relations. Case (I)
depicts the only instance where two figures can both touch and overlap simultaneously.

For reasons which will be discussed is section 9.3.4. these notions of intersect, touch, and overlap
must. be made 'fuzzy'. In this fuzzy definition of intersection, two figures intersect if the closest distance
between a point on one and a point, on the other is within some tolerance. The midpoint between those
two closest points is taken to be the intersection point, for determining the touch and overlap relations
if the two figures do not actually intersect. Finally, two points are taken to be coincident if the, distance
between them is within some tolerance.

4 For efficiency reasons, the current implementation of Abigail adds the additional assmunption that the size of corre-
sponding figures is invariant across framnes though this assumption is not fundamental and easily lifted.
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(a) (b) (C)

()(e) 
(f),x 0

(g)

(h)

VI) X 0) (k) O

Figure 8.1: The possible ways in which two figures can touch or overlap. Cases (a) through (h)
depict instances of touching. Cases (i) through (k) depict instances of overlapping. Case (i) depicts
the one instance which can involve both touching and overlapping between the same two figures.
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These are not meant to be taken as definitions of the words tnle 1vs-ct, louch. and t, rlal,. Rather
they are low-level perceptual notions out of which higher-level definitions of these words. and others.
can be constructed.

8.1.3 Joints

Part, of ABIGAIL's ontology is the knowledge that figures can be joined, fastened, or attached together.
A joint is a constraint that two figures intersect. I will denote a joint with the (possibly subscripted)
symbol j. The two figures joined by a joint j are denoted f(j) and y(j).

Joints can optionally further constrain the relative motion between two figures. Since each figure has
three degrees of freedom (the (x, y) position of one endpoint and its orientation), a joint can potentially
constraint each of these three degrees of freedom of one figure relative to another it is joined to. Thus
a joint may specify three parameters, each of which independently constrains one of the degrees of
freedom. Each of these parameters may be either real-valued or nil. A nil value for a parameter
signifies that a joint is flexible along that degree of freedom, while a real value specifies that it is
rigid. Joints can be independently rigid or flexible along each degree of freedom. A rigid rotation
parameter O(j) constrains the angle between the orientations of the two joined figures to be equal to the
parameter setting: O(j) = O(g(j)) - O(f(j)). The remaining two joint parameters are the displacement
parameters 6j(j) and 62 (j) which partially constrain the displacement of the intersection point relative
to each figure. Since the two figures of a joint must intersect, one can denote their intersection point
as p(j). If bf(j) is rigid then the constraint by(j) = 6(p(j),f(j)) is enforced. Likewise. if hy(j) is
rigid then the constraint 6,(j) = 6(p(j), g(J)) is enforced. 5 Note that giving circles orientations allows
defining the concept of rotational displacement. Without such a concept, fixing the relative positions of
two joints, each joining a different, line segment to the same circle, would require a complex constraint
specification between all three figures. With the notion of rotational displacement, the displacement of
each line segment relative to the circle can be fixed independently as a constraint between two figures.

Since two figures may have more than one intersection point, I add an additional simplifying as-
sumption about joints to allow unambiguous determination of the intersection point p(j). I require
that, at least one of the displacement parameters of each joint be rigid. Subject to this constraint, the
intersection point, can be found by using whichever of the following formulas is applicable. If 6f(j) is
rigid and f(j) is a line segment, then

X(p(j)) •=x(p(f (j))) + 6f (j) x (.-(q(f (j))) -. r(p(f (j))))

y(p(j)) - y(p(f(j))) + bf(j) x (y(q(f(j))) - y(p(f(j)))).

If bf(j) is rigid and f(j) is a circle then

x(p(j)) •= x(p(f(j)))+.X(p(f(j)),q(f(j)))cos(6f(j)+ O(f(j)))

y(p(j)) y(p(f(j))) + A(p(f(j)).q(f(j)))sin(bf(j)+ o(f(j))).

If 6 g(j) is rigid and g(j) is a line segment then

x(p(j)) = x(p(g(j))) + bg(j) X (.i'(q(g(j))) - X(p(g(j))))

y(p(j)) = y(p(g(j))) + 6,q(j) x (y(q(g(j))) - y(p(g(j)))).

'Due to roundoff problems, a fuzzy notion of equality must be used to enforce joint parameters. The fuzzy comparison

of angles must take normalization into account. This requires equating - r + ( to - - c.
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If 6g(j) is rigid and y(j) is a circle then

.r(p(j)) x(p(g(j)))+A(p(y(j)),q(y(j)))cos(t#(j)+O(g(j)))

y(p(j)) - y(p(Y(j))) + X(P(g(j)),q(g(j)))sin(b (j) + O(g(j))).

As part of her pre-linguistic endowment ABIGAIL knows that figures call be fastened bty joints and
that joints have the aforementioned properties. Furthermore, she knows how these properties affect
the motion of joined figures under the effects of gravity and related naive physical constraints. This
knowledge is embodied in an imagination capacity which will be discussed in chapter 9. However. her
perceptual processes do not allow her to directly perceive the existence of joints in the movie she is
watching. As perceptual input, she is given only the positions, orientations, shapes, and sizes of figures
in each movie frame. She is not told which figures are joined and how they are joined. She must infer this
information from the image figure data alone. Furthermore, which figures are joined and t he parameters
of those joints may change over time. Joints may be broken, as happens when a leg is removed from
the table. New joints may be formed, as would happen if a table was built by attaching its legs to the
table top. Rigid joint parameters may become flexible and flexible joint parameters may become rigid.
At all times ABIGAIL maintains a joint model, a set of joints J and their parameters, that she currently
believes to reflect what is happening in the movie. The process by which she updates this Joint model
will be described in section 8.2.1.

8.1.4 Layers

ABIGAIL'S micro-world is nominally two-dimensional. The movie input has only x and y coordinates. A
two-dimensional world, however, is very constraining, If one wants to model the substantiality constraint
in such a world, the movement of objects world be severely restricted. For instance, in the movie described
in section 6.1, John would not be able to walk, as he does, from one side of the table to the other, for
in doing so, he would violate substantiality. People, have no difficulty understanding that movie even
though they too, perceive only a two-dimensional image. That is because human world ontology is three-
dimensional and human perception understands two-dimensional depictions of a three-dimensional world.
So a human watching the movie described in section 6.1 would assume that John walked either in front
of the table, or behind it, as he passed from one side to the other.

I want, to be able to model such a capacity in ABIGAIL as well. Thus part of ABIGAIL's pre-linguistic
endowment is the knowledge that each figure in the world resides on some layer. Two figures may either
be on the same layer or on different layers. I will denote the fact that two figures f and g are on the
same layer by the assertion f m g, and the fact. that they are on different layers by the assertion f * g.
These layer assertions affect whether the substantiality constraint holds between a pair of figures. Two
figures which are on the same layer must not overlap. The substantiality constraint does not apply to
figures on different layers.

Just. like for joints, ABIGAIL is not given layer assertions as direct input.. She must infer which
figures are on the same layer, and which are on different layers, solely from image figure data. Again.
much in the same way that joint, parameters change during the course of a movie, figures cai move
from layer to layer as the movie progresses. Thus which layer assertions are true may change over time.
ABIGAIL maintains a layer model which consists of a set L of layer assertions that reflects her current
understanding of the movie. The process by which she updates this layer model will be discussed in
section 8.2.1.

ABIGAIL treats layer assertions as an equivalence relation. The c,< relation embodied in L is thus
reflexive, symmetric, and transitive. The layer model must also be consistent. It cannot imply that
two figures be both on the same layer, and on different. layers, simultaneously. Furthermore, if the
layer model neither implies that two figures are on the same layer nor that they are on different, layers.
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ABIGAIL will assunme that they are oil different lavers by default- Laver assertion., are a weak fbrm uof
information about tflie third dimension. In particular, there is no notion of onte figure Ibeii•g in front
of or behind another figure. nor is there a notion of two figures being on adjacent layers. No further
knowledge implied by our intuitive notion of -layer' is modeled bey ond layer equivalent10.

8.2 Perceptual Processes

Having presented the ontology which ABIGAIL projects onto the world, it is now possible to describe the
process by which she perceives support, contact, and attachment relations between objects in the mo ie.

Recall that ABIGAIL has no prior knowledge about the types or delineation of objects in the world. She
interprets any set of figures connected by joints as an object. To do so, she must kniow which figures
are joined. Not being given that information as input, her first task is to form a model of the iniage
that, describes which figures are joined. Since the attachment status of figures may change from frame
to frame as the movie unfolds, she must repeat the analysi.s which derives the joint model as part of the
processing for each new frame. The ontology which ABIGAIL projects onto an image includes a layer
model in addition to a joint model. Since ABIGAIL is given only two-dimensional information as input.
she must infer information about the third dimension in the form of layer assertions in the layer model.
Again, since figures can move from layer to layer during the course of the movie. ABIGAIL must update
both the layer and joint models on a per-frame basis. Thus ABIGAIL performs two stages of processing
for each frame. In the first stage she updates the joint and layer models for the image. The derived joint
model delineates the objects which appear in the image. In the second stage she uses tfie derived joint
and layer models to recover support, contact, and attachment relations between the perceived objects.
The architecture used by ABIGAIL to process each movie frame is depicted in figure 8.2. The architecture
takes as input, the positions, orientations, shapes, and sizes of the figures constituting tlhe image. along
with a joint and layer model for the image. The architecture updates this joint and layer model, groups
the figures into objects, and recovers support. contact, and attachment relations between those objects.

Central to the event. perception architecture is an imagination capacity which encodes naive physical
knowledge such as the substantiality, continuity, gravity, and ground plane constraints.

8.2.1 Deriving the Joint and Layer Models

As ABIGAIL watches the movie, she continually maintains both a joint model .1 and a layer model L.
At the start of the movie, these models are empty, containing no joints and no layer assertions. After
each frame of the movie, ABIGAIL looks for evidence in the most recent frame that the joint and layer
models should be changed. Most, of the evidence requires that ABIGAIL hypothesize potential changes
and then imagine the effect of these changes oil the world. ABIGAIL assumes that the world is for the
most part stable. Objects are typically supported. She considers an unstable world with unsupported
objects to be less likely than a stable one. If the world is unstable when iiiagined without making the
hypothesized changes, then these hypothesized changes are adopted as permanent changes to the joint
and layer models. This facet of ABIGAIL's perceptual mechanism is not justified by any experimental
evidence from human perception but simply appears to work well in practice.

ABIGAIL's preference for a stable world requires that, to the extent possible. all objects be supported.
There are two ways to prevent an object, from falling. One is for it to be joined to some other supported
figure. The other is for it to be supported by another figure. One figure can support another figure only
if they are on the same layer, since support happens as a consequence of the need to avoid substantialilty
violations and substantiality holds only between two figures on the same layer.

ABIGAIL's imagination capacity is embodied in a kinematic simulator. This simulator call predict
how a set of figures will behave under the effect of gravity, given particular joint and layer models. such
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[ joints

layer assertions

figures P.. objects

* substantiality i
* continuity
* gravity
* grourd plane contact

attachment

Figure 8.2: The event perception architecture incorporated into A bigail. The architecture takes as
input, the positions, orientations, shapes, and sizes of the figures constituting the image, along with a
joint and layer model for the image. The architecture updates this joint and layer model, groups the
figures into objects, and recovers support, contact, and attachment relations between those objects.
Central to the event perception architecture is an imagination capacity which encodes naive physical
knowledge such as the substantiality, continuity, gravity, and ground plane constraints.
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that naive physical colistraiints such as substantiality art, upheld. lhi.s imlagilnation capacix. ndenoted
as I(.F. J. L) will be described in detail iii chapter 9. 'fle processes de•.crilbd here treat thu is capacity
as modular. Any simulation inechainsin that acCuiratelv N models gravity and substantialht% will do. "[hli
event perception processes sinipIv call I(.T. J. L) wit Ii different values of F. . and L1 asking different
questions of the predicted future. ill ilie process of uipdating the joint and layer models and reco\,-ring

support relations.'
ABIGAIL Cali change the joint and layers models in six different ways to keel, those itiodels -,ynchro-

nized with the world. She can

"* add a layer assertion to L.

"* remove a layer assertion from L,

"* add a joint to .1,

"* remove a joint from J.

"* promote a parameter of some joint j E J from flexible to rigid.

"* demote a parameter of some joint j E J from rigid to flexible.

or perform any simultaneous combination of the above changes. Each type of change is nmotivated by
particular evidence in the most recent movie franie. potentially mediated by the imagination process.

ABIGAIL makes three types of changes to the layer model on the basis of evidence gained froii
watching each movie frame. The process can be stated informally as follows. Shit will add all assertion
that two figures are on different layers whenever they overlap. since if they were not on different layers.
substantiality would be violated. She will add an assertion that two figures are on the same layer
whenever one of the figures miust support the other in order to preserve the stability of the image.
Finally, whenever newer layer assertions contradict older layer assertions, the older ones are removed
from the layer model giving preference to newer evidence. For example. when presented with the image
from figure 6.1, ABIGAIL will infer that the ball and the table top are oni the samje layer since the ball
would fall if it was not supported by the table top.

The process of updating the layer model can be stated more precisely as follows. A layer mnodel
consists of an ordered set L of layer assertions. Initially, at the start of the movie. this set is empty. The
closure of a layer model is the layer model augmented with all of the layer assertions entailed by the
equality axioms. A layer model is consistent if its closure does not simultaneously imply that two figures
are on the same, as well as different, layers. ABIGAIL never replaces the layer model with its closure.
She always maintains the distinction between layer assertions that have been added to the modI as a
result of direct evidence, in contrast to those which have been derived by closure. A maximal consistent
subset of a layer model L is a consistent subset L' of L such that any other subset L" of L that is a
superset of L' is inconsistent. The lexicographic mnaximal consistent subset of a layer model L is the
particular maximal consistent, subset of L returned by the following procedure.

1 procedure MAXIMAL CONSISTENT SUBSET(L)
2 L'--{}

3 for a E L

4 do if L' U {a} is consistent.
5 then L'--L' U {a} fi od;
6 return L' end

6 As discussed in chapter 9. the imagination capacity I(F.J.L.P) takes a predicate P a& its fourth parameter. In
informal presentations, it is simpler to omit this parameter and use the English gloss 'P occurs during 1(-F. J. L)' in place
of I(Y. J. L. P).
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The above procedure may not find the largest possible nmaximal consistent tilbsel. 'liat prollein ha.,
been shown to be N P-hard by Wolfram (I 9Mt). 1'sing thie above heuristic has pro,,.n adequate it practice.

Given the above procedure we call now define the process used to updatet the layer mnodel. We
define 1, to be the set uf wdl difeivnt lawcr assertions f • q. where f and gq ()wrlal, ili the , n•,t recent
movie frame. These are layer assertions which must be added to the la\er -uode in order not to violaic
substantiality. We define L, to he the set of all saiit-laver assertion: f D <. where f and q touch inI
the most recent movie frame. These are hypothesized layer assertions which could potenmiallv account
for support relationships needed to preserve stability. L, contains assertions only between figures which
touch since only such assertions could potentially contribute to support relationships. T'hle layer model
updating procedure makes permanent only those hypothesized saume-layer assertions that actually do
prevent figures from falling under imagination. The layer niodel updating procedure is as follows.,

I procedure UPDATE LAYER MODEL

2 for fDgE L.
3 do if neither f nor g move during
4 I(Y,J. MAXIMAL CONSISTENT SUBSET(L* U (L. - {f >y}) U L))
5 then L.,-L.- {f y} fi od:
6 L-NIAXINIAL CONSISTENT SUBSET(LvI U L, U L) end

The process of updating the joint model is conceptually very similar to updating the layer model. The
algorithm is illustrated in figure 8.3. First, remove all joints j from J where f(j) does not intersect y(j)
in the most recent frame (lines 2 and 3). Second, demote any rigid parameter of any joint j E .J when the
constraint implied by that parameter is violated (lines 4 through 9). Third. remove all joints j from .1
where both bf(j) and b.,(j) are flexible (lines 10 and 11 ). This is to enforce the constraint from page 127
that every joint have at least one rigid displacement parameter. Fourth. find a minimal set of paranieter
promotions and new joints that preserve the stability of the image (lines 12 through 33). To do this
we form the set J' of all joints j' where f(j') intersects g(J') in the most recent movie frame (lines 12
through 20). Those joints in J' which appear in J have their parameters initialized to the same values
as their counterparts in J, while any new joints have their parameters initialized to be flexible. We then
promote all of the flexible parameters in .1' t~o have the rigid values that they have in the most recent
movie frame. One by one we temporarily demote each of the parameters just promoted and imagine
the world (lines 21 through 33). If when delnoting a parameter of a joint j'. the constraint specified
by the original rigid parameter is not violated during the imagined outcome of that demotion. then
that demotion is preserved. Otherwise, the parameter is promoted back to the rigid value it has in thme
most. recent movie frame. After trying to demote each of the newly promoted joint parameters. remove
all joints j' from J' where both 6f (j') and 6 .q(j') are flexible (lines 34 and 35) and replace .1 with P'
(line 36).8

Recall that, an object. can be supported in two ways. either by being joined to another object or by
resting on top of another object. on the same layer. ABIGAIL gives preference to the latter explanation.
Whenever the stability of an image can be explained by hypothesizing either a joint between two figures
or a same-layer assertion between those two figures. the same-layer assertion will be preferred. Thus for
the image in figure 6.1, ABIGAIL infers that, the ball is resting on top of the table, by virtue of the fact
that they are on the same layer, and not attached to the side of the table. If ABIGAIL did not maintain

The notation i used here and in figure 8.3 is described on page 160.
8 Only a simplified version of this algorithm is currently implemented. First. the implemented version does not consider

promoting existing flexible joints to explain the stability of an image. Only newly created rigid joints can offer such
support. Second, newly added joints are always rigid. They are demoted to be flexible only when they move. Thus rather
than finding a minimal set of promotions which make the image stable, the current implementation finds a minimal set of
new rigid joints to stabilize the image.
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I procedure UPDATE JOINT MODEL
2 for j E J
3 do if f(j) does not intersect y(j) then J-i - tj} fi od:
4 for jE J
5 do if 0(j) $ni A O(j) O(g(j)) - O(f(j)) then 9(j) -nil fi od:
6 for jE J
7 do if bs(j) # nil A hj(J) 0 6(1,(j). f(j)) then bf(j)-nil fi od:
8 for jE J
9 do if bg(j) : nil A 6g(j) $ 6(p(j),g(j)) then 6q(j)-nil fi od:

10 for jE J
11 do if 6f(j) = nil A hg(j) = nil then .I-J - {j} fi od:
12 .- {}
13 for fE.Y
14 do for g E T
15 do if f intersects g at p
16 then j' = f - g;
17 O(j')-O(g) - 0(f):
18 6i U')-Mp A
19 b (j-b(p g):
"20 .J'-.J'U {j') fi od od:
21 for j' E '
22 do j-nil;
23 for j" E J
24 do if f(j") = f(j') A g(j") = g(j') then j-j" fi od:
25 0-0(j'): O(j')-nil:

26 if (j # nil A 0(j) 0 nil) V O(g(j')) - O(f(j')) # 0 during I(-F. P'. L)
27 then O(j')-O fi;
28 bf- 6 f-(j'); bf (j')--nil; p--p(j');

29 if (j :A nilA 6 Q(j) 5 nil) V b6(p, f(j')) # bf during I(.-. P. L)
30 then bf(j')-bf fi;
31 69- 6 A(j'): 6A(j')-nil;
32 if (j # nil A bg(j) # nil) V h9 (p, g(j')) 9 6,, during I(.F, J'. L)
33 then 6 g(j')-q fi od&
34 for j' E P
35 do if bi(j') = nilA 69q(j') = nil then J'-J' - {j'} fi od:
36 J-J' end

Figure 8.3: The algorithm for updating the joint, model. Abigail performs this procedure as part

of her processing of each frame in the movie she watches.
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this preference shet would niever Conni saine-layer j udgiiieiits sin11ce an1% Htule a saitie-laver asst'ri i' alla
be used to providle support. a joint c-all b e used as well. The fact that tOli con verse is not true, all()%%. her
to hyplot hesize jointit whlen anl object wouild slide off aniot her olbjectI even'i it' t lie- were oil th an sici Ia vcr.

'The Joint and layers ijiodels niust be upd(ate'd sintilultaticotisi bN tandviii fprujces. rat her t haii
ii(lldeilndeiitlV. If thle joinit itiodel was. up~dated liefort' f ielit- i itiodel theit'i' would 1,~ it( wa toutiitret

fie aforemietit oiid preference for sante-layer support over joint su lpport. ou f ie( other hand. flit- la *er
niodel cannot be createtd before thie joint iiiodt'l. When processing the first itiiage. stariti'iti ou~t w%-itll
ati enipt y joint mnodel, ABIG;AItL could not infer any layer ijiforniat ion.ilc a layer iinodel akllne Is

insufficient to explain support. Wit hout any Joitnts. no set of' layer assertilonms canl iniprove thle saiitvof,
an imiage. Thus the processes of updat ing thle Joint and layers tinodels are interleaved, finding the least
cost conthinat ion of samne-layer assert ions and joint. promnotions which iniprove the stahilit v of the limage.
When conlipit ing the cost of such a comibination, samie-layer assert ions have lower cost than proilot ionls
of existing joints. which in turn have lower cost than creation of new joinits.

The miethod used 1w ABIGAIL to construct and up)date the joint and layer mnodels is best Illust rated
by way. of anl examiple. The following exaniple depicts ft(ti actunal results genlerated b%' ABIGAIL Whieii
processing the first twelve framies of the miovie described in sect ion (6.1. Figure (NA1 shows these first twelve
framies lin greater dletail. Since framne 0J is the first framine of the mnovie. ABIGAIL starts out proce'ssinig
this franie with emipty joint and layer miodels. W~it h etuipty niodels. the world Is comipletely unistable
and collapses into a pile of rubble when the short-termi future is. linagined. This is deplicted b~y thn'
imagination sequence given ini figure 8.5. Accordingly. ABIGAIL hypothesizes fthe set of joitits dhepicted
in figure 8.65 and layer assert~ions dlepictedl in figure 8.7. A joint is hypothesized bet weeii every pair of
intersecting figures. A samte-layer assert~ion is hypothesized between every pair of figures that touch. A
different -layer assertion is hypothesized between every pair of overlapping figures. Not all of these *Joit.,
and layer assertions are necessary to explaiti the stability of the imiage. Bly the process described above.
ABIGAIL chooses t~o retain only- the starred joint~s and layer a~ssertionls. With this niew joilit atill laye'r
miodel, the limage is stable.9

Several t~hings about the derived Joint and layers; models are worthy- of discussion. First, note that
the final layer miodel includes the following assertions1 0

(circle ball) ý4 (top table)
(bottom box) I, (top table)

indicating that. ABIGAIL has determinied that the ball and thle hot tom of tile box are resting oi i the
table rather thati being joined to t~he table top. Second. the heni of Mary's dress niced only bie jo~ined
to one side of her dress, since one rigid joint is sufficient. to support the line, segmnent constituill ig lie(

hemi. Third, the imiage contains a numnber of locations where the endpoinits of mnulriple line segtiieuits art'
coincident, on the sam-e point. Such a situation arises,. for examiple. where .John's legs tueet his torso. InI
this situat~ion, t~hree joints are possible.

(torso john) -(right-thigh john)
(torso john) -(left-thigh john)
(right-thigh john) - (left-thigh john)

All three of these joint~s are not necessary to achieve a stable limage however. Any% two of these joitits are,
sufficient., since relative rigidit~y is t~ransitive. ABIGAIL arbitrarily chooses the last; two Joints as tlie ones

9 Except for the fact. that John's and Mary's eyes fall out, since they appeal' unsupported. This highlight, a deficiency
in the ontology incorporated into Abigail's perceptual mechanisms. I wilt not address this anomaly. and methods for
dealing with it. in this thesis.

10 In this and all further discussion, expresisions such as (circle ball) denote particular figures. Thesp figures are given
names to aid in the interpretation of the results produced by Abigail. Abigail does not have access to these tiames
during processing. so that fact that the names of several figures. i.e. (circle ball). (line-segmenti ball). etc. share the
component ball in common. in no way assists Abigail in her perceptual processing.
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Frame 0 Frame 6

Frame 0 Frame 7

Frame 2 Frame 8

Frame 3 Frame 9

Frame 4 Frame 10

Frame 5 Frame 11

Figure 8.4: The first twelve frames of the movie depicted in figure 6.4. The script used to generate
this movie is given in figure 6.3.
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Frame 0, Observed Image Frame 0, Imagination Step 36

Frame 0, Imagination Step 6 Frame 0, Imagination Step 42

Frame 0, Imagination Step 12 Frame 0, Imagination Step 48

Frame 0, Imagination Step 18 Frame 0, Imagination Step 54

Frame 0, Imagination Step 24 Frame 0, Imagination Step 60

_ _ _ __ 0 O
Frame 0, Imagination Step 30 Frame 0, Imagination Step 64

Figure 8.5: A subsequence of images produced by Abigail while imagining the short-term future of
frame 0 from the movie described in section 6.1 with empty joint and layer models.
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(hem mary) - (dress2 mary)
* (hem mary) - (dressi mary)

(dress2 mary) - (dress1 nary)

(dress2 mary) - (torso mary)
(dress2 mary) - (right-upper-arm nary)

* (dress2 mary) - (left-upper-arm mary)

(dress1 mary) - (torso mary)
(dressl mary) - (right-upper-arm nary)

* (dressl mary) - (left-upper-arm nary)
* (mouth nary) - (head mary)

* (head mary) - (torso mary)
(torso mary) - (right-thigh mary)

* (torso nary) - (left-thigh mary)
(torso mary) - (right-upper-arm mary)

* (torso nary) - (left-upper-arm mary)

* (right-thigh mary) - (left-thigh mary)
* (right-thigh mary) - (right-calf mary)
* (left-thigh mary) - (left-calf mary)
* (right-upper-arm mary) - (left-upper-arm mary)
* (right-upper-arm mary) - (right-fore-arm mary)
* (left-upper-arm mary) - (left-fore-arm mary)
* (mouth john) - (head john)
* (head john) - (torso john)

(torso john) - (right-thigh john)
* (torso john) - (left-thigh john)

(torso john) - (right-upper-arm john)
* (torso john) - (left-upper-arm john)
* (right-thigh john) - (left-thigh john)
* (right-thigh john) - (right-calf john)
* (left-thigh john) - (left-calf john)
* (right-upper-arm john) - (left-upper-arm john)
* (right-upper-arm john) - (right-fore-arm john)
* (left-upper-arm john) - (left-fore-arm john)

(circle ball) - (line-segment3 ball)
(circle ball) - (line-segment3 ball)

* (circle ball) - (line-segment2 ball)
(circle ball) - (line-segment2 ball)

* (circle ball) - (line-segmentl ball)
(circle ball) - (line-segmentl ball)
(circle ball)- (left-leg table)
(circle ball)- (top table)
(circle ball) (top table)
(bottom box) - (right-wall box)
(bottom box) - (left-wall box)

(bottom box) - (right-leg table)
* (right-wall box) - (top table)
* (left-wall box) - (top table)
* (seat chair2) - (back chair2)
* (seat chair2) - (front chair2)
* (seat chairl) - (back chairl)

* (seat chairl) - (front chairl)
* (right-leg table) - (top table)
* (left-leg table) - (top table)

Figure 8.6: Abigail hypothesizes these joints when processing frame 0 of the movie depicted in
figure 8.4. Since not, all of these joints are necessary to explain the stability of the image. A bigail
retains only the starred joints.
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(hen mary) D4 (dress2 nary)
(hen mary) D (dress1 mary)
(dress2 mary) D< (dressl mary)
(dress2 mary) D (torso nary)
(dress2 mary) t> (right-upper-arm mary)
(dress2 nary) D< (left-upper-arm mary)

(dressl mary) D4 (torso mary)
(dressl mary) t> (right-upper-arm mary)
(dress1 mary) c4 (left-upper-arm nary)

(mouth mary) x (head mary)
(head mary) m (torso mary)
(torso mary) D (right-thigh mary)
(torso mary) D (left-thigh mary)

(torso mary) b (right-upper-arm mary)
(torso mary) t4 (left-upper-arm mary)

(right-thigh mary) D (left-thigh mary)
(right-upper-arm mary) D (left-upper-arm mary)
(right-upper-arm mary) o (right-fore-arm mary)
(mouth john) t (head john)
(head john) m- (torso john)
(torso john) b (right-thigh john)
(torso john) ro (left-thigh john)
(torso john) t>4 (right-upper-arm john)
(torso john) : (left-upper-arm john)

(right-thigh john) m (left-thigh john)
(right-thigh john) x (right-calf john)

(left-thigh john) m• (left-calf john)
(right-upper-arm john) t<• (left-upper-arm john)
(right-upper-arm john) >< (right-fore-arm john)

"* (circle ball) >* (line-segment3 ball)

(circle ball) x (left-leg table)
"* (circle ball) c4 (top table)

(bottom box) D4 (right-wall box)
(bottom box) P< (left-wall box)
(bottom box) D4 (right-leg table)

" (bottom box) > (top table)
(right-wall box) ma (top table)
(left-wall box) P4 (top table)
(seat chair2) D.4 (back chair2)

(seat chair2) D4 (front chair2)
(seat chairl) D (back chairn)
(seat chairl) D4 (front chairl)
(right-leg table) x (top table)
(left-leg table) x• (top table)

", (hem mary) 0 (right-calf mary)
", (hem mary) 0 (left-calt mary)
", (dressl mary) 0 (left-fore-arm mary)
", (torso mary) rA (left-fore-arm mary)
", (torso john) qA (left-fore-arm john)
"* (line-segment3 ball) q (line-segment2 ball)
"* (line-segment3 ball) 0 (line-segmentl ball)
* (line-segment2 ball) r (line-segmentl ball)

Figure 8.7: Abigail hypothesizes these layer assertions when processing frame 0 of the movie de-
picted in figure 8.4. Since not all of these layer assertions are necessary to explain the stability of
the image, A bigail retains only the starred layer assertions.
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to make part of her joint niodel.
T'lte joint and layer models constructed by ABIGAIL contain a number of anomalies that point out

deficiencies in the perceptual theory. First, note that (line-segment3 ball) is not COl't'(itod It tl•e
remaining components of the ball. Tihe intention was that the ball would be composed of four fig-
ures, a circle and three line segments. ABIG;AIL perceives (line-segment3 ball) to bei a separate
object inside the ball. This is a possible interpretation given her ontology since. being inside the ball,
(line-segment3 ball) is supported by resting on the interior perimeter of the circle, and thus there is
no need to postulate a joint to achieve stability. In fact, given ABIGAIL's preference for support relations
over joints, she must come to this analysis. Why then are the remaining two line segmnents not supported
in an equivalent fashion without joints? The answer is simple. For a line segment to be so supported
it must be on the same layer as the circle. Since layer equivalence is a transitive relation, all three line
segments would have to be on the same layer. They cannot be however, as their intersection would t hen
constitute a substantiality violation. Thus only one line segment can be explained by support. ABIGAIL

arbitrarily chooses (line-segment3 ball) as that line segment.
The joint and layer models exhibit a second, more serious, anomaly. While ABIGAIL correctly deter-

mines that the bottom of the box rests on the table top. site incorrectly decides that the vertical walls
of the box are joined to the table top rather than the box bottom. This is a plausible but unintended
interpretation. Both interpretations require the same number of joints, t hus neither is preferable to the-
other. One way of driving ABIGAIL to the intended interpretation would be to add an additional level
to the preference relation between joint, and layer models to prefer one model over another if its joints
connected smaller figures rather than larger ones, given that two models otherwise had the sane number
of joints. I have not tried this heuristic to see if it would work.

At, this point ABIGAIL begins processing frame 1. Between frame 0 and frame 1, John lifted his right
foot. In doing so he rotated his right knee and thigh joints. Thus the first thing ABIGAIL does is demote
the rotation parameters for the joints

(right-thigh john) - (left-thigh john)
(right-thigh john) - (right-calf john)

from being rigid to being flexible. The resulting image is not stable however. Since John appears to
staand on one foot, he falls over when the future is imagined."1 In the process of falling his right thigh
can rotate relative to his torso since that joint is now flexible. ABIGAIL hypothesizes the existence of a
new rigid joint, (torso john) - (right-thigh john). While this joint does not prevent John from
falling, it does prevent the rotation of his right thigh relative to his torso during that fall. ABIGAIL
adopts that joint as part, of the updated model since she adopts any joint which prevents the relative
rotation of the two figures it, would connect.

At this point. ABIGAIL begins processing frame 2. Between frame 1 and frame 2, John started moving
forward. In doing so he rotated his left knee and thigh joints, causing ABIGAIL to demote the rotation
parameters for the joints

(torso john) - (left-thigh john)

(left-thigh john) - (left-calf john)

from being rigid to being flexible. Between frame 2 and frame 3. John begins moving his right foot

forward as well, pivoting his right thigh relative to his torso. This causes ABIGAIL to demote the
rotation parameter for the joint (torso john) - (right-thigh john). just created while processing
frame 1, front being rigid to being flexible. The model now constructed remains unchanged until frame 7.

"It will not show the resulting imagined image since John falls backward out of the field of view due to the fact that

his center-of-mass is behind his left foot. Later in the text. I will illustrate the imagined future of frame 11, where .John*,l
center-of-mass has shifted so that he falls forward in a visible fashion.
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In frame 7. John's knees appear close together as his right leg passes his left leg. This causes
ABIGAIL to postulate a spurious joint, (right-calf john) - (left-calf john), betweell John's two
knees. Again, while this joint does not prevent John from falling, it does reduce the movenient of his legs
during that fall. This reduction in leg movement prompts ABIGAIL to adopt thejoint as part of her joint
model. This spurious joint is then dropped from the joint model after frame 8. since (right-calf john)
and (left-calf john) no longer intersect. Furthermore. as a result of observing the right leg pass the
left leg during its forward motion. ABIGAIL adds the following two assertions to the layer model

(left-thigh john) t (right-calf john)
(right-calf john) ri (left-calf john)

knowing that otherwise, a substantiality violation would have occurred. At this point, thie model remains
unchanged through frame 11.

Figure 8.8 depicts the sequence of images produced by ABIGAIL while imagining the short-term future
of frame 11. For reasons discussed previously, John's and Mary's eyes fall out in steps I and 2. In step :1,
John pivots about his left leg until his right foot. reaches the floor. In step 4. lie pivots about his right
foot, until his right knee reaches the floor. In step 5. he then pivots about his right knee until both his
hand and head reach the floor. This is possible since his right knee has a flexible rotation parameter.
Note that his head can appear to pass through the chair since ABIGAIL assumes that objects are on
different layers unless she has explicit reason to believe that they are on the same layer. Finally. in
step 6, his left calf pivots about his left knee until his left foot reaches the floor. Again. this is possible
since his left knee has a flexible rotation parameter.

One can imagine other sources of evidence which can be used to update the joint and layer models.
Collisions can be used to determine that two objects are on the same layer, since two objects must be onl
the same layer in order to collide. A sequence of frames where one object, moves toward anot her object but
upon contact (or approximate contact given the finite frame rate) begins moving away from that object.
can be interpreted as a collision event, giving evidence that the contacting figures of each object are
on the same layer. Such inference could provide information not derivable by the procedure previously
described. It is not currently implemented. as determining collisions requires tracking momentum of
objects across frames. ABIGAIL currently processes each frame individually.

The continuity constraint offers another source of evidence which can be used to infer that objects
are on different. layers. Seeing an object. totally enclosed by another object in one frame. and then
outside that object in the following frame, gives evidence that the two objects are on different layers,
even without, a directly observed substantiality violation, since there would be no way for that transition
to occur, given continuous movement and the substantiality constraint., unless the two objects were on
different layers. In contrast, to collisions, this would offer little additional inferential power since given
a sufficiently high frame rate relative to object velocities, the observer would see an intermediate frame
with a direct substantiality violation.

8.2.2 Deriving Support, Contact, and Attachment Relations

ABIGAIL maintains a joint and layer model to reflect her understanding of the movie. These models
are continually updated, on a frame-by-frame basis, by the processes described in the previous section.
The models form the basis of mechanisms used to derive changing support, contact., and attachment
relationships between objects in the movie. It is necessary, however, to first delineate those collections
of figures which constitute objects. To this end. ABIGAIL forms the connected components in a graph
whose vertices are figures and edges are joints. Each connected component is taken as an object. Not
all connected sets of figures constitute objects. Only those which form complete connected components
are taken as objects. Once a set of figures is determined to be an object, however, that set retains
its status as an independent object, even though it may later be joined to another object. When that
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Frame 11, Observed Image

Frame 11. Imagination Step 1

Frame 11, Imagination Step 2

Frame 11. Imagination Step 3

Frame 11, Imagination Step 4

Frame 11, Imagination Step 5

Frame 11, Imagination Step 6

Figure 8.8: The sequence of images produced by A bigail while imagining the short-term future of

frame 11 from the movie described in section 6.1.
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happens, a part-whole hierarchy is created which represents both the individual parts, as well as the
combined whole, as objects. This is needed to model grasping as thiet format ion of a joint between one's
hand and tile grasped object. The independent identity of both the person grasping an object. as well
as the object being grasped, must be maintained, despite the creation of a spurious combined object.
Likewise. when a joint is removed from the joint model, an object is broken into part.,, which are takein
as objects. The identity of the original object is retained however. The new parts are thought of both
as objects in their own right, as well as parts of an object no longer in existence. ABIGAIL considers
aii object to exist if the set of figures constituting that object are currently connected. In this way,
ABIGAIL can form a primitive model of the words inak( and brfak as the transition of an object from
non-existence to existence and vice versa. Furthermore, since ABIGAIL retains the identity of objects no
longer in existence. it is possible to model tile word fix as the transition of aii object from existence to
non-existence and then back again to existence.

Given the segmentation of an image into objects, tile joint and layer models formi tile basis for
detecting contact and attachment relations between those objects. Two objects art, attached if the
current joint model contains a joint between some figure of one object and sonme figure of the other
object. Two objects are in contact if some figure of one object both touches (in tile sense described in
figure 8.1), and is on the same layer as, some figure of the other object. Detecting support relations.
however, requires further use of the imagination capacity. The lexical semantic representation presented
in chapter 7 uses two different support primitives, one to determine whether an object is supported, the
other to determine if one object supports another. An object is considered supported if it does not move
when the short-term future of the world is imagined. A single call to I(Y. ,1. L) will suffice to determine
those objects which are unsupported.12 To determiine whether an object .4 supports another object /.

ABIGAIL imagines whether B would fall if A were removed. This is done by calling I(F-figures(.4). J. L)
and seeing if B moves. An object A supports another object B only if B is indeed supported. 'Fhe fact
that. B falls when A is removed is insufficient to infer that A supports B since B may have fallen even
with A still in the image. Here again, a single call to I(F - figures(A), .1, L) can be used to determine

all of the different objects B which are supported by A. Thus for n objects, n + I calls to the imagination
capacity I must be performed per frame to determine all support relationships.13

The recovery of support, contact, and attachment. relations from image sequences is best illustrated
by way of several examples. Since the full movie from section 6.1 is fairly complex. I will first illustrate thie

results produced by ABIGAIL while processing a much shorter and simpler movie. This movie depicts
a single object,, John, taking two steps forward, turning around, and taking two steps in the other
direction. It. contains 68 frames, each containing 10 line segments and 2 circles. Figures 8.9 depicts tle
pivotal frames of this short movie.

ABIGAIL is able to fully process this movie in several minutes of elapsed time on a Synmbolics XL1 20 0 T M

computer. taking several seconds per frame. '[his is within two orders of magnitude of tile processing
speed necessary to analyze such a movie in real time. The result of ABIGAIL's analysis is depicted by
the event graph illustrated in figure 8.10. Each edge in this graph denotes sonic collection of perceptual
primitives which hold during the interval spanned by that edge. Figures 8.11 and 8.12 enumerate the
perceptual primitives associated with each edge in this graph.1 4

12lnefficient design of the structure of the current implementation requires I(Y... L) to be called independently for each
object. Remedying that inefficiency should dramatically improve the performance of the system.

"13For the same reasons as mentioned before, the current implementation must call I for each pair of objects. thus
requiring n 2 + n calls. To mitigate this inefficiency somewhat, the current implementation only discerns direct support.
i.e. support relations between objects in contact with each other. Indirect support can be derived by taking the transitive
closure of the direct support relation. This efficiency improvement could be combined with the strategy suggested in the
text whereby I(.F - figures(A). J. L) would be called only if .4 was in contact with some other object.

"14 The perceptual primitives are predicates which hold of objects. As far as Abigail is concerned, objects are simply
collections of figures. To make the output more readable, however, objects are printed using notation like [JOHN]. This
printed notation for objects is derived from the names of the figures comprising the object. Recall that figures are given
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Frame 0 Frame 34

Frame 1 Frame 35

Frame 2 Frame 36

Frame 15 Frame 49

Frame 16 Frame 50

Frame 16 Frame 51

Frame 18 Frame 52

Frame 32 Frame 66

Frame 33 Frame 67

Figure 8.9: Several key frames depicting the general sequence of events from a shorter movie used
to test Abigail.
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52 66
52

50-51
50

36 49
36

35
34

33-34
33

18 32
18

16-17
16

2 67
2 15

2
1 67

0-1
0

Figure 8.10: The event graph depicting the temporal structure of the perceptual primitives recovered
by A bigail after processing the short movie from figure 8.9. Each edge denotes some collection of
perceptual primitives which hold during the interval spanning that edge. Figures 8.11 and 8.12
enumerate the perceptual primitives associated with each edge in this graph. The edges from 2
to 15, from 18 to 32. from 36 to 49, and from 52 to 66 each correspond to a step taken by John while
walking.

In addition to support, contact, and attachment relations, the set of perceptual primitives includes
expressions for depicting various kinds of motion, as well as the location of objects and the paths followed

by objects during their motion. I will not discuss these primitives in depth as they are tangential to the
main focus of this thesis.

At a high level, the correspondence between this event, graph and the events in the movie are in-
tuitively obvious. In the movie, John takes four steps while continuously moving. The event graph
also depicts four sub-event clusters of the overall motion event. Each cluster further breaks down into
a transition between standing on both feet, to moving forward, to again standing on both feet. Note
particularly, that John is supported in those situations where he is standing on both feet. namely
frames 0, 16, 33, 34, and 50, and not otherwise.15

While this event graph bears a global resemblance to the movie, it is not adequate to detect walking

names of the form (f x) where x is an 'intuitive' object name given to the figure by the person creating the movie script.
and f is an analogous 'intuitive' part name. The printed representation [ci ..... c] delineates the figures which comprise
an object by grouping those figures into components c, based on the intuitive figure name assigned by the script writer.
If c, is a symbol x then it denotes the set of all figures in the image named (f x) for some f. If c, is a pair (f xr) then
it denotes the single figure bearing that name. If c, is of the form x-part then it denotes a set of figures in the image
named (f x) for any f, where the set contains more than one figure but not all such figures. I should stress that Abigail
does not use such annotations for anything but printing.

''An astute reader may wonder why John doesn't fall even when both feet are on the ground. given that his knee and
thigh joints are flexible. The reason for this will be explained in section 9.4.
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(O,O)(PLACE [JOHN-part] PLACE-O)
[0,0) (SUPPORTED (JOHN-part))

(0,1)(PLACE ((EYE JOHN)) PLACE-i)

(1,67) (MOVING (JOHN-part))

(2,2) (ROTATING-COUNTER-CLOCKWISE (JOHN-part))

[2,2) (ROTATING (JOHN-part))

(2,15) (MOVING-ROOT (JOHN-part))
(2,15](TRANSLATING ((EYE JOHN)) PLACE-2)

[2,15)(MOVING-ROOT ((EYE JOHN)]))

(2,16)(MOVING ((EYE JOHN)]))

[2,67) (TRANSLATING [JOHN-part] PLACE-li)

[16, 16) (SUPPORTED [JOHN-part))

[16,17)(PLACE ((EYE JOHN)) PLACE-3)

(18, 18) (ROTATING-COUNTER-CLOCKWISE (JOHN-part))

(18,18) (ROTATING [JOHN-part))

(18,32) (MOVING-ROOT (JOHN-part))
(18,32J(TRAISLATING ((EYE JOHN)) PLACE-4)

[18,32)(NOVING-ROOT ((EYE JOHN)]))
(18,32)(MOVING [(EYE JOHN))

(33,33) (PLACE ((EYE JOHN)) PLACE-5)

(33,34) (SUPPORTED (JOHN-part))

Figure 8.11: Part, I of the perceptual primitives recovered by A bigail after processing the short
movie from figure 8.9.
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[34,34) (FLIPPING [JOHN-part))
[34,34) (ROTATING-COUUTER-CLOCKWISE [JOHN-part))
[34,34) (ROTATIIG-CLOCKWISE (JOHN-part))
[34,34) (ROTATING [JOHN-part))
[34,34) (MOVING-ROOT [JOHN-part))
[34,34)(TRANSLATIIG [(EYE JOHN)) PLACE-6)
[34,34) (ROTATIEG-COUNTER-CLOCKWISE [(EYE JOHN))
[34,34)(ROTATING [(EYE JOHN)]))
[34,34)(MOVING-ROOT [(EYE JOHN))
[34,34](MOVING [(EYE JOHN)))

[35,35) (PLACE [(EYE JOHN)] PLACE-7)

[36,36) (ROTATING-CLOCKWISE [JOHN-part))
[36,36) (ROTATING (JOHN-part))

(36,49) (MOVING-ROOT [JOHN-part))
[36,49](TRANSLATING [(EYE JOHN)) PLACE-8)
[36,49J(MOVING-ROOT ((EYE JOHN)]))
(36,49](MOVING [(EYE JOHN)]))

[50,50) (SUPPORTED [JOHN-part))

[50,51) (PLACE [(EYE JOHN)) PLACE-9)

[52,52) (ROTATING-CLOCKWISE [JOHN-part))
(52,52) ROTATING [JOHN-part])

£52 ,66) (MOVING-ROOT [JOHN-part))
[52,66) (TRANSLATING [(EYE JOHN)) PLACE-10)
£52,66)(NOVING-ROOT [(EYE JOHN))
[52,66) (MOVING ((EYE JOHN)]))

Figure 8.12: Part 11 of the perceptual primitives recovered hi' Abigail after processing the short
movie from figure 8.9.
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using the definition given in chapter 7.

(define step (x)
(exists (i j k y)

(and (during i (contacts y ground))
(during j (not (contacts y ground)))
(during k (contacts y ground))
(equal y (foot x))
(= (end i) (beginning j))
( (end j) (beginning k)))))

(define walk (x)
(exists (i)
(and (during i (repeat (step x)))

(during i (move x))
(during i
(exists (y)
(and (equal y (foot x))

(contacts y ground))))
(during i
(not (exists (y)

(and (equal y (foot x))
(slide-against y ground))))))))

Two major things are missing. First, the ground must be reified as an object so that ABIGAIL caln
detect the changing contact relations between John's feet. and the ground. Second, the slide-against
primitive must he implemented. Future work will address these two issues ill tile hope that ABIGAIL

can detect, the occurrence of walking events.

ABIGAIL has processed a sizable portion of the larger movie described in section 6.1. While she cannot
yet process the entire movie due to processing time limitations, figure 8.13 depicts all event graph
produced for the first 172 frames of that movie. Appendix C enumerates the perceptual primitives
associated with the edges in that graph. Producing this event, graph required about twelve hours of
elapsed time on a Symbolics XLI200TM computer. Comparing this with the time required to process
the shorter movie indicates that in practice, the complexity of the event perception procedure depends
heavily on the number of figures and objects in the image.1'

I will not discuss ABIGAIL's analysis of the longer movie in depth except, to point out two things.
First, one major event that takes place during the first 172 frames is John picking up the ball off the
table. The perceptual primitives recovered by ABIGAIL form a solid foundation for recognizing this
event. Recall the definition given for pick up in chapter 7.

16 The unreasonable amount of time required to process the longer movie significantly hindered the progress of this
research.
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166
164-165

150- 163
150

148-149
134- 147

134
133
132
131

116- 130
116

114-115
100-113

100
98-99

83-97
83

81-82
73---80

72
71

67
66-71

65
64

59-70
59-64

51 -68
51

49-50
49

35 -48
35

33-34
33

18----32
18

16-17
16

2 60
2-15

2
1 64

0 171
0 71
0 a5
0-1

0

Figure 8.13: The event graph depicting the temporal structure of the perceptual primitives recovered
by Abigail after processing the first 172 frames of the movie discussed in section 6.1. Appendix C

enumerates the perceptual primitives associated with each edge in this graph.
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(define pick-up (x y)
(exists (i j z)
(and (during i (supported y))

(during i (supports z y))
(during i (contacts z y))
(during j (move (hand x)))
(during j (contacts (hand x) y))
(during j (attached (hand x) y))
(during j (supports x y))
(during j (move y))
(not (equal z (hand x)))
(= (end i) (beginning j)))))

If we take i to be the interval [0,65] and j to be the interval [66, 71]. the following perceptual primitives
taken from appendix C correspond very closely to the above definition.

(during i (supp.•rted y))
[0,71] (SUPPORTED [BALL-part])
[0,71] (SUPPORTED [(LINE-SEGMENT3 BALL)])

(during i (supports z y))
[0,65] (SUPPORTS (TABLE BOX-part] [BALL-part])
[0,71] (SUPPORTS [BALL-part] [(LINE-SEGMENT3 BALL)L)

(during i (contacts z y))
(0,68] (CONTACTS [TABLE BOX-part] (BALL-part])

(during j (supports x y))
[66,71] (SUPPORTS [JOHN-part] [BALL-part])
[66,71] (SUPPORTS [(LINE-SEGMENT3 BALL)] [BALL-part])
[66,71] (SUPPORTS [BALL-part JOHN-part] [(LINE-SEGMENT3 BALL)])

(during j (move y))
[66,71] (TRANSLATING [BALL-part] PLACE-19)
[66,71] (MOVING-ROOT [BALL-part])
[66,71] (MOVING [BALL-part])
[66,71] (TRANSLATING U(LINE-SEGMENT3 BALL)] PLACE-17)
[66,71] (MOVING-ROOT [(LINE-SEGMENT3 BALL)])
[66,71] (MOVING [(LINE-SEGMENT3 BALL)])

Note that if an object is supported (by another object) for an interval, say [0.71]. then it is supported
for every subinterval of that interval, in particular [0, 65]. Given this. ABIGAIL has detected almost all
of the prerequisites to recognize a pick up event. The only primitives not recognized are the following.

(during j (move (hand x)))
(during j (contacts (hand x) y))
(during j (attached (hand x) y))

ABIGAIL has in fact detected these prerequisites as well. They just don't appear in the event graph from
figure 8.13 as that graph depicts only those primitives which no longer hold after frame 172. John's hand
continues to move while grasping the ball well beyond frame 172. The above primitives will become part
of the event graph when these actions terminate.
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A puzzling thing happens in ABIGAIL's analysis of this movie. ABIGAIL decides that the table is

unsupiported in fraiie 172. This is indicated by the fact that event graph contains an edge froii fraiie 0
through frame 171 with the following perceptual primitives.

[0,171](SUPPORTED [TABLE BOX-part])
[o,171](SUPPORTED [(BOTTOM BOX)])
[0,171] (SUPPORTS [TABLE BOX-part] [(BOTTOM BOX)])

Inspection of the movie, however, reveals that tile table remains supported throughout the entire movir.

What causes ABIGAIL to suddenly decide that the table is unsupported in framne 172'? Figure & .1 depicts
the sequence of images that are part of ABIGAIL's imagination of the short-termi future for frame 172.
In this sequence, John falls over as he is unsupported. In doing so, the ball he is holding knocks against
the table. WAhile ABIGAIL knows that John is on a different layer from the table, to allow him to walk
across the table without a substantiality violation, she also knows that the ball is on the same layer as
the table, since in the past. the table supported the ball. This allows John to raise the table up on one
leg by leaning on its edge with the ball. Since ABIGAIL determines that something is unsupported if it
moves during imagination, she decides that the table is unsupported. This points out a deficiency in the
method used to determine support. Ali object may be supported even though an unrelated object could
knock it. over during imagination. Methods to alleviate this problem are beyond thie scope of this thesis.

I will discuss one further deficiency in ABIGAIL's mechanism for perceiving support. Recall that
ABIGAIL determines that an object. A supports all object B if B is supported but loses that support
when A is removed. Figure 8.15 depicts a board supported by three tables. Since removing each table
individually will not cause the board to fall, ABIGAIL would erroneously conclude that none of the tables
support the board. This flaw is easily remedied by having ABIGAIL consider all sets of objects A to see
if B falls when the entire set. is removed. If so, then either the set can be taken as collectively supporting
the object, or support can be attributed to each member of the set individually.

8.3 Experimental Evidence

As discussed previously, a major assumption underlying the design of ABIGAIL is that people continually
imagine the short-term future, extrapolating perhaps a second or two into the future, as all ordinary

component of visual perception. Freyd and her colleagues have conducted a long series of experiments

(Freyd 1983, Freyd and Finke 1984, Finke and Freyd 1985, Freyd and Finke 1985. Finke et al. 1986.
Freyd 1987, Freyd and Johnson 1987, Kelly and Freyd 1987) that support this view. These experiments
share a common paradigm designed to demonstrate memory shift. Subjects are shown a sequence of

images which depict one or more objects in motion. They are then shown a test image and asked

whether the objects in the test image are in the same position as they were in the final image in the
pre-test sequence. Sometimes the objects are indeed in the same position and the correct response is
Isame'. Other times however, the object~s are displaced along the direction of mnotion implied by the
pre-test, image sequence, in either a forward or reverse direction. In this case the correct response is

"different.'. Subjects uniformly give more incorrect responses for test images where the objects were
displaced further along the path of implied motion than for test images where the objects were displaced
in the reverse direction. In fact., for some experiments, subjects were more likely to give a 'same' response
for a slight forward displacement than for an image without any displacement. These experiments were

repeated, varying a number of parameters. These included the number of pretest images, the number
of moving objects in the image sequence, the length of time each pre-test or test image was displayed.

the length of time between the display of each pre-test image or between the display of the final pre-test

image and the test. image, and whether the images were taken from real photographs or were computer-
generated abstractions such as rotating rectangles or moving dots. It appears that subjects* memory of an
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Frame 172, Observed Image Frame 172, Imagination Step 6

Frame 172, Imagination Step 1 Frame 172, Imagination Step 7

Frame 172, Imagination Step 2 Frame 172, Imagination Step 8

Frame 172, Imagination Step _ Frame 172, Imagination Step 8

Frame 172, Imagination Step 3 Frame 172, Imagination Step 9

Frame 172, Imagination Step 4 Frame 172, Imagination Step 10

Frame 172, Imagination Step 5 Frame 172, Imagination Step 11

Figure 8.14: The sequence of images produced by Abigail while imagining the short-term future of
frame 172 from the movie described in section 6.1. Abigail imagines that John will fall and knock
over the table. Due to a flaw in the method for determining support. Abigail concludes that the
table is unsupported.
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iT- I I
Figure 8.15: Three tables collectively supporting a board. Abigail will currently fail to determine
that the tables support the board since the board will not fall when each is removed individually.

object's position is shifted reliably as a result of an object's suggested motion. Freyd and her colleagues
attribute this memory shift to what they call a mental extrapolation of object movement. Through
statistical analysis of the error rates and reaction times for the various experimental tasks. they claim to
have demonstrated, among other things, that objects move progressively during extrapolation, that an
object's velocity during extrapolation is roughly equivalent, to its final velocity implied by the pre-test
image sequence, that it takes some time to stop the extrapolation process and the amount of time needed
to stop the extrapolation process is proportional to an object's final velocity during the pre-test image
sequence. They call this latter phenomenon representational momentum due to its similarit.y to physical
momentum.

In many of its details, the extrapolation process uncovered by Freyd and her colleagues differs from
the artificial imagination capacity incorporated into ABIGAIL. As I will describe in chapter 9, ABIGAIL's
imagination capacity has no notion of velocity or momentum. Nonetheless, I take the results of Freyd
and her colleagues as strong encouragement that the approach taken in this thesis is on the right track.

In more recent work, Freyd et al. (1988) report, evidence that the human extrapolation process
represents forces, such as gravity, in addition to velocities. Furthermore, they report evidence for the
representation of forces in equilibrium, even for static images. In particular, their experiments show that
subjects who perceive essentially static images with forces in equilibrium, such as one object. supporting
another, extrapolate motion on the part of the objects in those images when the equilibrium is disturbed,
as when the source of support is removed. This is more in line with ABIGAIL'S imagination capacity.

The experimental paradigm they used is similar to that used for the memory shift. experiments. It is
depicted in figure 8.16. Subjects were shown a pre-test sequence of two images followed by a test image.
The first image in the pre-test sequence depicted a plant supported either by a stand or by a hook. The
plant appeared next to a window to allow subjects to gauge its vertical position. The second image
depicted the plant unsupported, with the stand or hook having disappeared. The test image was similar
to the second image except. that. in some instances, the plant was displaced upward or downward from
its position in the second image. Subjects viewed each image in the sequence for 250ms. with a 250ms
interval between images. They were asked to determine whether the test image depicted the plant in the
same position as the second image or whether the test. image depicted the plant in a different position.
Subjects made more errors determining that the test image differed from the second image when the
test image depicted the plant in a lower position than the second image in contrast to when the test
image depicted the plant in a higher position. This result, can be interpreted as indicating that subjects
imagined that the plant fell when its source of support. was removed.

ABIGAIL performs an analogous extrapolation when determining support relationships. She contin-
ually performs counterfactual analyses determining that an object is supported if it does not fall during
extrapolation. A second experiment reported by Freyd et al. (1988) indicates that humans do not per-
form such analyses in all situations. This experiment, is similar to the first experiment except that the
plant, was also unsupported in the first, image, i.e. it was unsupported throughout the image sequence.
The image sequence is depicted in figure 8.17. In this experiment, subjects demonstrated no memory
shift and thus no tendency to imagine the unsupported plant falling. It appears that a change in support
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1: Plant with 2: Unsupported TEST: Plant
support Plant in same position above, below or in

as 1. same position as 2.
I

Stand
Condition J

Hook
Condition

I ... I

250 msec 250 msec 250 msec 250 msec On until subject responds

Time

Figure 8.16: The image sequences shown to subjects as part of an experiment to demonstrate that.
people represent forces in equilibrium when viewing static images. Reprinted from Freyd et al. (1988).
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1: Plant shown 2: Plant shown without TEST: Plant above, below
without support support in same position or in same position as 2.

as1.

I I

250 msec 250 misc 250 mrrc 250 msoc On unt abieM responds

Time

Figure 8.17: The image sequences shown to subjects as part of an experiment to demonstrate that
people don't always represent forces in equilibrium when viewing static images. Reprinted from
Freyd et al. (1988).

status is necessary to induce the imagined falling. ABIGAIL's imagination capacity does not accurately
reflect this last result.

To summarize, experiments rep ,l'ed by Freyd and her colleagues depict an active perceptual system.
forming the basis of our conceptual system, which has as its foundation an imagination capacity which
encodes naive physical knowledge. This capacity appears to be in place front very early infancy. This
view is most eloquently captured by the following excerpts from Freyd et al. (1988).

Much of what people encounter in everyday life is static from their point, of reference: Cups
rest on desks, chairs sit. on floors, and books stand on shelves. Perhaps it. is the very perva-
siveness of static objects and still scenes that has been responsible for psychology s historical
focus on the perception of static qualities of the world: shape and form perception, pattern
recognition, picture perception, and object, recognition. In apparent contrast to this focus,
there has been an increasingly popular emphasis on the perception of events, or patterns
of change in the world. There is a sense, however, in which the study of event perception
(e.g., J. J. Gibson. 1979) has shared some assumptions with the more traditional focus on
the perception of static stimuli. In both approaches event and dynamic stimuli have been
defined in terms of changes taking place in real time, whereas scenes that are not changing
in real time (or are being viewed by an observer who is not moving in real time) have been
considered simply static, that is, specifically not dynamic.

This view of static objects and scenes suggests that. the perception of a static scene is devoid of
information about dynamic qualities of the world (which led J. J. Gibson, 1970, for instance.
to consider the perception of static scenes to be a mere laboratory curiosity). But if we take
dynamic to mean relating to physical force acting on objects with mass. then this view is
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incorrect.

(I). 39,. emphasis ini the original]

Having some sort of access to likely transformations by representing physical forces may help
solve a slightly different problem in object recognition: the prol)lemn of correctly identifying
a particular instantiation, or 'token." as a member of a larger class, or type, or object. If
part of what, one stores in memory about an object type is aspects of its likely behavior when
embedded in events, then representing physical forces operating on objects in a particular
perceptual situation may help in the process of identification of a particular object token.

[p. -105]

Of course, to go correctly from visual input to a representation of forces, the underlying
representation system has to *-know" something about physical forces and how they interact
with objects for a particular environment, such as the environment encountered on the surface
of the planet Earth. Such knowledge may be a function of the inherited or experientially
modified representational structure serving perception.

[1p. 40(6]

Indeed, our view suggests that. when people are viewing a static scene, lurking behind itie
surface of consciousness is an inherently dynamic tension resulting from the representation
of forces in equilibrium. We see this dynamic tension as contributing to the conscious expe-
rience of concreteness in perception and to the memory asymmetries we measure when the
equilibrium is disrupted.

[p. 4071

Perhaps we might also be able to determine whether the present findings generalize to phys-
ical situations beyond gravity, such as those where pressure (or even electromagnetic force)
dominates. However, we suspect that gravity is a better candidate for mental "-inlernaiiza-
tion" than other forces. Shepard (1981, 1984) has argued that the mind has internalized
characteristics of the world that have been most, pervasive and enduring throughout evolu-
tion. Although Shepard's (1981. 1984) list, has emphasized kinematic, as opposed to dynamic.
transformations, the dynamic aspects of gravity are indeed pervasive and enduring charac-
teristics of the world.

[p. 405]

Although some might accept. that the force of gravity and its simple opposing forces (Ex-
periments 1-3) could be represented within the perceptual system. many might argue that
the representation of forces active in springs (Experiment 4) implicates real-world learning
and thus suggests that the basis of the effect. is more central than perceptual. We suggest
two responses to this argument: First, perceptual knowledge of springlike behavior may be
innately given and not dependent, on learning; second, evidence of perceptual learning is
not necessarily evidence against. modularity. For both of these responses, we question the
assumption that. the effect in Experiment 4 stems from knowledge of springs per se. It
might instead reflect, perceptual knowledge of compressible and elastic substances. of which
springs are an example. DiSessa (1983) suggested that springiness is a phenomenological
primitive. E. J. Gibson, Owsley. Walker. and Megaw-Nyce (1979) found that 3-month-old
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infants extract object rigidity or nonrigidity from motion, suggesting that people distinguish
compressible from noncompressible substances at a very early age.

[p. 4 0 6]1i

This thesis adopts that above view and takes it as motivation for the design of Abigail s perceptual
system.

8.4 Summary

In chapter 7, 1 argued that the notions of support, contact, and attachment play a central role in the
definitions of simple spatial motion verbs such as throw, pick up. put, and walk. It this chapter. 1
presented a theory of how these notions can be grounded in perception via counterfactual simulation.
An object is supported if it doesn't fall when the short-term future is imagined. One object supports
another object. if the second is supported, but loses that support in a world imagined without the first
object.. Two objects are attached if such attachment is needed to explain the fact that one supports the
other. Likewise, two objects must be in contact if one supports the other. A simple formulation of this
theory has been implemented as a computer program called ABIGAIL that watches movies constructed
out of line segments and circles and produces descriptions of the objects and events depicted in those
movies. The events are characterized by the changing status of suppoit. contact, and attachment
relations between objects. This chapter has illustrated how such relations could be recovered by using a
modular imagination capacity to perform the counterfactual simulations. The next chapter will discuss
the inner workings of this imagination capacity in greater detail.

17
Experiments 1 and 2 correspond to figures 8.16 and 8.17 respectively. Experiment 3 extends experiments I and 2

in testing for representation of gravitational forces. Experiment 4 uses a similar experimental setup to test for the
representation of forces in a compressed spring as weights are placed on top of the spring and removed from it.



Chapter 9

Naive Physics

Much of ABIGAIL's event perception mechanism, and ultimately the lexical semantic representation she
uses to support language acquisition, relies on her capacity for inmagining what will happen next in the
movie. This imagination capacity is used as part of a continual counterfactual 'what if' analysis to
support most of event perception. For example, ABIGAIL infers that two figures are joined if one would
fall away from the other were they not joined. Knowing which figures are joined allows her to segment
the image into objects comprising sets of figures that are joined together. This ultimately allows the
grounding of the lexical semantic primitives (attached r' y) and (in-existence I'). Furthermore.
imagination plays a role in determining support relationships. ABIGAIL infers that two figures are on
the same layer if one would fall through the other were they not on the same layer. This is required
to ground the lexical semantic primitive (contacts x y). Knowing that two figures are on the same
layer allows her to determine that, one object supports another if the second would fall were the first
object removed. This ultimately allows the grounaing of the lexical semantic primitives (supports a y)
and (supported x).

ABIGAIL's imagination capacity is embodied in a simulator which predicts how a set of figures will
behave under the influence of gravity. Gravity will cause the figures to move subject to several constraints.

joint constraints: Figures that are joined must remain joined. The values of rigid joint parameters
must be preserved.

substantiality: Two figures which are on the same layer must not. overlap.

ground plane: No figure can overlap the line y = 0.

Furthermore, each of these constraints is subject to the notion of continuity. Not only must all figures
uphold the joint, substantiality, and ground plane constraints in their final resting position, they must
uphold these constraints continuously at all points along their path of motion. Figure 8.8 on page 141,
gives an example of ABIGAIL's imagination capacity in operation.

The problem of simulating the behavior of a set of components under the influence of forces subject to
constraints is not new. Much work on this problem has been done in the field of mechanical engineering
and robotics where this problem is -alled kinematic simulation of mechanisms. The classical approach
to kinematic simulation uses numerical integration.' Essentially, it, is treated as an n-body problem
subject to constraints. Since the constraints are typically complex, it. is difficult to derive an analytic.
closed-form method of preserving constraints during integration. Accordingly, the common approach

iTwo notable exceptions to this are the work of Kramer (1990a, 1990b) and Funt (1980). I will discuss this work in

section 10.1

157
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is to integrate using a small step size and repeatedly check for constraint violations. Preventing con-
straint violations is often accomplished by modeling then) as additional forces acting oil the comijponients.
(remer's thesis ( 1989) is an example of recent work in kiiieniatic simulation using numerical inaegraliolJ.

The classical approach to kinematic simulation ha.s certain merits. Ip Io lhe limit.s of nuLllierical
accuracy, it faithfully models the Newtonian physics of a mnechanisni. This includes the l velocity. mlo-
nmenturn. and kinetic energy of its comnponents as well as the magnitude of force- collectively acting
on each component. It can handle arbitrary forces as well as arbitrary motion constraint,,- Except
where numerical methods break down at singularities, it accurately predicts th precise motion that
components undergo, the paths they follow, and their final resting place when the mechanismm reaclies
equilibrium.

While this classical approach to kinematic simulation is useful in mechanical engineerinlg it is less
suitable as a cognitive model of all iniate imagination capacity, if one exists. The approach is both too
powerful and at the same time too weak. On one hand, people are not able to accurately predict the
precise paths taken by component-s of complex mechanisnms. On thie other hand, people do not appear to
be performing numerical integration with a sniall step size. Consider the mechanism shown in figure 9. 1.
The mechanism consists of a ball attached to a rod which is joined to a stand. The joint is flexible.
allowing the rod to pivot and the ball to fall until it hits the table. The classical approach will simulate
such a tnechanism by small repeated perturbations of the joint angle 0. After each perturbation. a
constraint check is performed to verify that the ball does not overlap the table. There is sonething
unsatisfying about this approach. People seem to be able to predict that thlie rod will pivot precisely the
amount needed to bring the ball into contact with the table.

Using a small but nonzero step size has other consequences that conflict with the needs entailed by
using a kinematic simulator as part of a model of event perception. One one hand. smaller step sizes slow
the numerical integration process. Current kinematic simulators typically operate two to three orders of
magnitude slower than real time. Event perception however, must perform numerous sumnulations per
frame to support counterfactual analysis. As discussed in chapter 8, to determine support relationships
alone, a simulation must be performed for each pair of objects in the image to determine whether one
object falls when the other object is removed. To be cognitively plausible, or at least COn putationallv
useful for event perception, the simulator incorporated into the imagination capacity must opera,(- two
to three orders of magnitude fasier than real time, not slower. Admittedly. the current implementation
is nowhere near that, fast. Nonetheless. it does perform hundreds if not thousands of simulations duriiig
the five to ten minutes it takes to process each movie frame.

Using a large step size to speed up the classical approach is likewise cognitively implausible. Large
step sizes raise the possibility of continuity violations. The configurations before and after an integration
step may both satisfy all of the constraints yet there may be no continuous path for the components to
take to achieve that perturbation which does not violate some constraint. For example. if the ball in
figure 9.1 was smaller and the step size was larger than the diameter of the ball, a classical simulator
could err and predict that the ball would fall through the table. While in normal mechanical engineering
practice, judicious choice of step size prevents such errors from occurring, there is something unsatisfying
about, using the classical approach as a cognitive model. Irrespective of their size. people seem able to
uniformly predict that, objects tmove along continuous paths until obstructed by obstacles.

The kinematic simulator incorporated into ABIGAIL uses very different methods than classical sim-
ulation with the objective of being both more faithful as a cognitive model and fast enough to support
event perception. It, is motivated by the desire to simulate mechanisms like the one shown in 9.1 in a
single step (which it in fact does). To do so. it takes the cognitive notions of substantiality, continuity.
gravity, and ground plane to be primary, and Newtonian physical accuracy to be secondary. To simplify
the task of enforcing the cognitive constraints. ABIGAIL's imagination capacity ignores many aspects of
physical reality and restricts the class of mechanisnms it, call simulate. First. the simulator ignores the
velocity of objects. This implies ignoring the effects of momentum and kinetic energy on object motion.
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joint with flexible rotation

(a) (b)

(Cb)

Figure 9.1: The simulator incorporated into Abigail's imagination capacity can predict in a single

step that the joint will pivot exactly the amount, needed until the ball lands on the table. Cla~ssical
kinematic simulators based on numerical integration repeatedly vary the angle 0 by a small step

size until the ball collides with the table. If the step size is too small the simulation is slow. If the
step size is too large the collision might not be detected, resulting in a simulation which violates the
substantiality and continuity constraints. Abigail never produces such anl anomalous prediction.
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Rather than integrating accelerations into velocities and positions, the simijulator operates a.& an opti-
nizer, simply moving objects along paths which reduce their potential energy- Second. for the most part.
the simulator ignores the magnitude of forces acting on objects when computing their potential energy.

Objects simply move when forces are applied to them, in a direction which decreases their potential
energy. They don't move any faster when the force is greater nor do objects necessarily moe\. in a direc-
tion which offers the greatest decrease in potential energy. Third, the simulator considers moving only

rigid objects, or rigid parts of objects, along linear or circular paths, one at a time. when attempting to
reduce their potential energy. Aiyn mechanism which involves either muotion along a more complex path
or simultaneous motion of multiple objects along different paths cannot be correctly simulated. This
precludes simulating mechanisms with closed-loop kinematic chains ` While these limitations make this
simulator inappropriate for traditional mechanical engineering tasks, at least the first two liimmitations
are inconsequential for the task of modeling the use of imagination to support event perception. The
third limitation does, however, cause some problems. These will be discussed in section 9A.-.

9.1 Simulation Framework

ABIGAIL simulates the imagined future of an image by moving sets of figures from that image along linec, r
and circular paths which reduce the potential energy of the set of moved figures. 'File potential energy
of a set of figures is simply the sum of the potential energies of each figure in that set. The potential
energy of a figure f is taken to be the product of its mass m(f) and the height of its center-of-|nass .(f).

ABIGAIL's kinematic simulator is a function 1(Y., J, L, P) which takes as input, a set of figures T.
along with a joint model J, a layer model L, and a predicate P. 3  Each figure f E . has an ob-
served position, orientation, shape, and size as derived from the current movie frame. From this input.
I(Y, J, L, P) calculates a series of imagined positions and orientations for each f E F. 4 This series of po-
sitions and orientations constitutes the motion predicted by ABIGAIL for the figures under the influtence of
gravity. I will denote the imagined positions and orientations of a figure f as x(p(f)). y(p(f)). and 0(f)
in contrast to the observed positions x'(p(f)), y(p(f)), and 0(f). I similarly extend such notation to

distances A(p, q), displacements b(p, f). and any other notion ultimately based on coordinates of figure
points. During imagination. ABIGAIL applies the predicate P to the imagined positions and orientation
of the figures after moving each group of figures. If P(F) ever returns true then t lie simnulat ion is halted
and I(., J, L. P) returns true. If P(.F) never returns true and the simulation reaches a state where
no further movement is possible, I(F. ., L, P) returns false. Thus I(." J. L. P) can be interpreted as
asking whether P will happen imminently in the current situation.

During simulation, ABIGAIL will move one set of figures. whilc leaving [le remaining figures station-
ary. The set, of moved figures will be called the foreground while the stationary figures will he called the
background. I will denote the set of foreground figures as F and the set of background figures as ,;G. The
sets F and G are disjoint. Their union constitutes the entire set of figures J- being imagined. This might
not. be equivalent to the entire set of figures in the current movie frame, since ABIGAIL often imagines
what would happen if certain figures were missing, as is the case when she tries to determine whether
one object supports another by imagining a world without the first object. Two kinds of foreground

2 A closed-loop kinematic chain is a set of components { Im.. } where each c, except c. is joined to c,+, and c, is
joined back to cl.

"3This may appear to be circular since I(5, J, L P) takes joint and layer models as input, and in turn. is used to compute
joint and layer models according to the process described in section 8.2.1. This circularity is broken by calling 1(F. J. L. P)
with empty joint and layer models initially to compute the first joint and layer models, and using the previous models ai
each franme to compute the updated models. Surprisingly, it usually takes Abigail only a single frame to converge It, the
correct models.

I Independent of the simplifying assumption discussed in section 8.1.2. during imagination the shapes and sizes of figures
must remain invariant to avoid producing degenerate predictions.
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motion are considered: translating f" along a linear axis whose orientation is 0. and rotating I' about a
pivot point tp. The pivot point need not lie oil any figure- ill . Ih fac t it can be e-ilther ins ide or ouisidt,

the bounding area of V.
The simulator operates by repeatedly choosing soiiie foreground V and ,ither translating F along,

all appropriate axis 9, or rotating I' about all appropriate pivot point p. as far a., it call. so) long as tOle

potcntial cnorgy of f' is continually decreased and the substantiality. ground planc, and joint constraints

are not violated. It termnnates when it cannot find some foreground it call move to decrea., its poteitial
energy. At each step of the simiiulation there may be several potential motiot.,- which could each redlic
the potential energy. For the most part, the choice of which one to take is soinewhat arbitrary. though
there is a partial ordering bias which will be described shortly.

The key facet of this simulation algorithm is that at each step, the foreground is translated or rotated
as far as possIbM subject to the requirements that potential energy continually decrease and constraints
he maintained. Limiting all motion to be linear or circular, and limiting figure shapes to be line segnmienits

and circles, allows closed-form analytic determination of the mnaxinmun movement possible during that
step. Later in this section, I will discuss this fairly complex closed-formi solution.

At each simulation step, ABIGAIL must choose all appropriate foreground V. decide whether to
translate or rotate F, and choose ati appropriate axis 0 for the translation or pivot point p for the

rotation. Having made these choices, the maximum nmovement ( is analytically determiined. ('hoosing

the type of movement (V, and 0 or p), however, involves search. ABIGAIL considers the following six

possibilities in order.

Translating an object downwards. In this case F consists of a set of figures counmected by joints
and 0 = -Z. There must by no joint between any foreground and background figures. Thus I"
must be a connected component in the connection graph whose vertices are figures and edges are
joints between pairs of figures.

Sliding an object along an inclined surface. In this case PF consists of a connected componentl iii
the connection graph and 0 is either the orientation 0(f). or the opposite orientation O(f) + -,r.

whichever is negative when normalized, of some line segmlent f such that either

1. f is in the foreground and is coincident with a line segment y iln the background,

2. f is in the background and touches a line segment g iln the foreground at all endpoitt of g.

3. f is in the background and is tangent to a circle g in the foreground.

4. f is in the foreground and touches a line segment, y in the background at an endpoint of g, or

5. f is in the foreground and is tangent to a circle g iii the background

as long as f D< g. No other translations axes need be considered for this case. Furthermore,
neither vertical nor horizontal translation axes need be considered since vertical translation axes

fall under the previous case, and horizontal motion will never reduce the potential energy of all
object. Figures 9.2(a) through 9.2(e) depict cases 1 through 5 respectively. These cases may at
times yield multiple potential sliding axes for a given foreground as demonstrated in figures 9.2(f)
through 9.2(h). In figure 9.2(f) these degenerate to the same axis. lii both figures 9.2(g) and 9.2(h)
only one of the two axes allows unblocked nlovement. In general. when multiple sliding axes are

predicted, they will either be degenerate, or all but one will be blocked.
An object falling over. In this case F consists of a connected component in the connection graph

and p is either

1. an endpoint of a line segment from F if the endpoint lies on the ground,

2. an endpoint of a line segment f from F if the endpoint lies on a figure g from ( and f m ..
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 9.2: Determining the potential axes 0 of sliding. A foreground might slide relative to a
background along any line segment from the foreground which either is coincident with some line
segment. touches the endpoint of some line segment. or is tangent to some circle, in the background,
or along any line segment from the background with an analogous relationship to a figure in the
foreground. Other axes, including the orientations of unrelated line segments, line segments which
touch other figures in ways other than those specified above, or line segmeniLs which don't touch
across the foregrL md and background boundary need not be considered.
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3- an en dfpoint of a line segiient I froui C; ifI the entdpoint lies on a figure f front F and f > y.

4. the center of a circle froni F if the circle totiches the ground.

5. the center of a circle f front F if the circle touches a figure y froi (G and f x y. or

6. the center of a circle g froni G if the circle touches a figure f front F and J C><l y.

No other pivot points need be considered for this case. Figures 9.3(a) through 9.3(f) depict cases I
through 6 respectively.

X'arying a flexible rotation parameter of a joint. If j is a joint with a flexible rot at ion parai|eter
that connects two parts of an object that are otherwise unconnected then it is possible to rotate
either part about the joint pivot. In this case F can be any connected conmponent in tlie connection
graph comnpited without j such that F containus either f(j) or g(j). The only pivot point which
need be considered is p(j), the point where the two figures are joined. If j is not part of a closed-
loop kinematic chain then there will always be exact ly two such foregrounds f-. one for each subpart
connected by j. One subpart will contain f(j) while the other will contain y(j). If j is part of
a closod-loop kinematic chain then there will be a single such foreground F containing both f(j)
and y(j). ABIGAIL detects this case and simply does not consider rotating about flexible joints in
closed-loop kinematic chains. This amounts to treating all closed-loop kinematic chains as rigid
bodies.

Varying a flexible translational displacement parameter of a joint. If j is a joint such that t .f(j)
is flexible and f(j) is a line segment then it is possible to translate either part connected by j
along f(j). In this case only the orientation O(f(j)), or the opposite orientation O(f(j)) + ,r,
need be considered as possible translation axes, whichever is negative when normalized. Likewise.
if 6,(j) is flexible and g(j) is a line segment then it is possible to translate either part connected
by j along g(j). In this case only the orientation O(y(j)). or the opposite ,rientation O(y(j)) - r
need be considered as possible translation axes, whichever is negative %hiien normalized. II both
cases, the translation is limited to the distance between p(j) and the appropriate endpoint of the
line segment, along which the translation is taken. The limits imnposed by this constraint are co(n-
puted analytically and combined with the limits iniplied by the substantiality and ground plane
constraints. The foreground F is computed in the saine way as for the aforementioned case of
varying a flexible rotation parameter and is limited to varying joints which do not participate in
closed-loop kiniematic chains.

Varying a flexible rotational displacement parameter of a joint. If j is a joint such that ýf(j)
is flexible and f(j) is a circle then it is possible to rotate either part connected by j about thie center
of f(j). In this case the only pivot point that need be considered is l'(f(J)). Likewise, if q(j) is
flexible and g(j) is a circle then it is possible to rotate either part connected by j about the center
of g(j). In this case the only pivot point that need be considered is p(g(j)). The foreground F is
computeed in the same way as for the case of varying a rotation paraineter and is linited to varying
joints which do not participate in closed-loop kinematic chains.

Currently, only the first four cases are implemented. Varying displacement parameters of joints is not
implemented though it, is not conceptually difficult to do so.

Having chosen a foreground F, and whether to translate F along a chosen axis 0, or to rotate F
about a chosen pivot, point p. the simulator mtust now determine (. the anoutnt of the translation or
rotation. As nientioned previously, the simulator will always translate or rotate the foreground as far
as it will go, in a single analytic step, until one of two conditions occur: either further translation or
rotation will no longer decrease the potential energy or a barrier prevents further mnovemnent. There are
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A\

(a) (b) (C)

(d) (e) (f)

Vigure 9.3: Determining the potential pivot points p about which an object may rotate when falling

over. When falling over. an object can pivot only about a point touching the ground or another

object. No other pivot points need be considered.



9.2. TRANSLATION AXI) ROTATION LIMITS 165

two kinds of barriers: the ground. via the ground plane constraint, aid another tigure on ill , sanii layer.
via the subst ant iality const raiit.

Deterniiing when further translation or rot at ion will no longer decrease the pot ential energy is as.y.

For translation along an axis 0. there is no int m. So long as the axis of translation 0 is negatlive wheln
normalized, further downward translation of f" will always decrease the poteiial energy of 1'. Upward
translations where 0 is positive need never be considered since they can only increase tflie ot, P iotetal

energy. Likewise. horizontal translations, where 0 = 0 or 0 = -,r need not bh considered since th,.y will

not affect the potential energy.' For rotation about a pivot point 1), the appropriate limit is tle rotation

which would bring the center-of-mass of / directly below p. This rotation can be calculated as follows.
First compute t lie center-of-mass of F' which I will denote as p( f).

*(Jf
2 r f ,,,(f)q.(f)

ZJc•F 111(f)

E-•f C F ,tf

Then compute the orientation of the line from the pivot point p to this center-of-mass p((/-). This
is O(p.t,(F)). The desired rotation limit is -. 1 - O(p)p(F)). If this value is zero when normalized then
no rotation of F about the pivot point p will reduce the potential energy of '. so such a rotation is
not considered. If the value is negative when normalized then only a clockwise rotation can reduce
the potential energy of F. If the value is positive but not equal to -,r when normalized then only a
counterclockwise rotation can reduce the potential energy of F. If tihe value is -r when normalized then
the choice of rotation direction is indeterminate since either a clockwise or counterclockwise rot at ion will
reduce the potential energy. In this case a counterclockwise rotation is chosen arbit rarily. Furt hermore.
if the pivot. point p is coincident with the center-of-mass p(F) then no rotation of F about the pivot
point J) will reduce tihe potential energy of F. so again. such a rotation is not considered. Since tli,

magnitude of a rotation need never be greater than -,r we can represent clockwise rotations as negative
normalized rotations and counterclockwise rotations as positive normalized rotations.

9.2 Translation and Rotation Limits
Determining the translation and rotation limits that result from barriers is more complex. In essence,

*he following procedures are needed.

"* (aggregate-translation-limit F (; 0)

"* (aggregate-clockwise-rotation-limit F' (; p)

"* (aggregate-counterclockwise-rotation-limit F (; p)

These determine the maximum translation or rotation ( that can be applied to a foreground f'I until

it collides with either the ground or with the background G. Translating or rotating a foreground fT
will translate or rotate each figure f E F along the same axis 0 or about the same pivot point p. A
foreground F can be t~ranslated or rotated until any one of its figures f E F is either blocked by the

ground or by some figure 9 E G such that f and y are on the same layer." Being blocked by the

"The reason angles are normalized so that a left ward orient at ion is + - andt nfb -7 is so that only downward translat ion
axes are negative.

+f~Hecal that Abigail assumes that two figures are on different layers unless she has explicit rea.son to believe that they
are on the saine layer.
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ground, i.e. the ground plane constraint, can be handled as a variation of the substantialit constraint
by temporarily treating the ground as a sufficit-ntly long line segientlt that is on the same layer as
every figure in the foreground. Thus the above procedures which compute miovemttent limits tor a whole
foreground can be inmplemented in terms of procedures which comipute limits for individual figures via
the following template.7

(defun aggregate-type-limit (F ( 0)
(iterate outer

(for f in F)
(minimize (lyp(-limit f *ground* 0))
(iterate (for g in G)

(when (same-layer? f g)
(in outer (minimize (Oypt-limit f y 0)))))))

where type is either translation, clockwise-rotation or counterclockwise-rotation. To inmple-
ment the functions

"* translat ion-limit,

"* clockwise-rotation-limit, and

"* counterclockwise-rotation-limit

which compute movement limits for individual figures. eight major cases must be considered.

1. Translating a line segment f until blocked by a another line segment g.

2. Translating a circle f until blocked by a line segment g.

3. Translating a line segment f until blocked by a circle g.

4. Translating a circle f until blocked by another circle q.

5. Rotating a line segment f until blocked by a another line segment q.

6. Rotating a circle f until blocked by a line segment g.

7. Rotating a line segment f until blocked by a circle y.

8. Rotating a circle f until blocked by another circle g.

Each of these eight cases contains a number of subcases. Many of these cases and subcases compute the
amount that f may move until blocked by q by instead computing the amount that g may move in the
opposite direction until blocked by f. Translations in the opposite direction involve a translation axis
whose orientation is 0 + -,r instead of 0. Rotations in the opposite direction return clockwise limits as
counterclockwise ones and vice versa. I will now consider each of these eight major cases individually.
along with their subcases.

Translating a line segment f until blocked by another line segment q.
This case contains four subcases. all of which must be considered. The tightest limit returned by
any of the subcases is the limit returned by this case.

7This code fragment uses the iterate macro introduced by Amsterdam (1990).
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p(f)

fN

Figure 9.4: Translating a line segment f until its endpoint Plf) touches another line segment g.Translating 
f until its endpoint 

p(f) touches g.
This subcase is depicted in figure 9.4. Project a ray r from p(f) along the axis 0. This ra y

will be called a translation ra y. If r does not intersect g then this subcase does not limit

the translation of F along the axis 0. However. if r does intersects g at p, then the distance

from p(f) to p, is a limit on the translation of F along the axis 0. The position of f after tile

tranislation 
is depicted 

as fl in figure 9.4.

This case has a boundary case to consider when the translation ray r. intersects g at one of

its endpoints. If r intersects P(9) then g limits the translation of f only when 10(f) - 0(y)l <

TN

7 when normalized. Likewise, if r intersects q(y) then g limits the translation of f only

when 10(f) - O(q(y),p(g))J < .1 when normalized. These boundary cases are illustrated in

2N

figure 9.5. In figure 9.5, the endpoint p(g) of line segment g limits the translation of f but
not the translation of f'.Translating f until its endpoint q(f) touches g.

This case is analogous to the first subcase except, that, the translation ray is projected from q(f)
instead 

of p(f).Translating 
f until it touches the endpoint 

p(g).

This case reduces to the first subcase by translating g in the opposite directiloll (0 + - until p(g)
touches 

f.
Translating 

f until it touches the endpoint 
q(g).

This case reduces to the second subcase by translating g in the opp~osite direction 0 + -r
until q(g) touches f.Translating a circle f until blocked by a line segment g.

This case contains three subcases, all of which must be considered. The tightest limit returned byany of the subcases is the limit, returned by this case.
Translating f until it is tangent to g.

This subcase is depicted in figure 9.6. Construct two lines segments, gi and 92_, parallel to

and oin either side of the line segment ,g, separated from g by a distance equal to tile radius
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ff

N*

Figure 9.5: A boundary case of the cas•e depicted in figure 9.4 occurs when the translation ray T

intersects an endpoint of g. In this case. the endpoint pig) of g limits the translation of f but not
the translation off. i IIi
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q(gl)

q(y)

q(Y. 2)
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Figure 9.6: Translating a circle f until it, is tangent to a line segment y.

of the circle f. The endpoints of g, and g2 are those that result from moving the endpoints
of g a distance equal to the radius of f along axes which are perpendicular to g. The line
segments gt and 92 are the potential loci of the center of the circle f if it were tangent to g.
Project a translation ray r from the center p(f) of the circle along the axis 0. If r does
not intersect, either g, or 92 then this subcase does nnt Einit the translation of F along the
axis 0. However, if r does intersect g, at Pi then the distance from p(f) to p1 is a limit on the
translation of F along the axis 0. Likewise, if r intersects 92 at p.2 then the distance from p(f)
to P2 is a limit on the translation of F along the axis 0. The position of f after the translation
is depicted as fl in figure 9.6.

Translating f until it touches the endpoint p(g).
This subcase reduces to the second subcase of the next case by translating the line segment g
in the opposite direction 0 + ir until its endpoint p(g) touches the circle f.

Translating f until it touches the endpoint q(g).
This subcase reduces to the third subcase of the next case by translating the line segment y
in the opposite direction 0 + 7r until its endpoint q(g) touches the circle f.

Translating a line segment f until blocked by a circle g.
This case contains three subcases, all of which must be considered. The tightest limit returned by
any of the subcases is the limit, returned by this case.

Translating f until it is tangent to g.
This subcase reduces to the first subcase of the previous case by translating the circle g in
the opposite direction 0 + ,r until it, is tangent to the line segment f.
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1''M

Figure 9.7: Translating a line segment f until its endpoint p(f) touches a circle g.

Translating f until its endpoint p(f) touches g.
This subcase is depicted in figures 9.7 and 9.8. Project a translation ray r from the end-
point p(f) along the axis 0. If r does not. intersect the circle g then this subcasc does not
limit the translation of F along the axis 0. However, if r does intersect g at one point Pi. as
it does in figure 9.7, then the distance from p(f) to p, is a limit on the translation of F along
the axis 0. If r intersects g at two points pi and p2, as it does in figure 9.8, then the shorter
of the distances from p(f) to p, and from p(f) to p is a limit on the translation of F along
the axis 0. The position of f after the translation is depicted as f1 in figures 9.7 and 9.8.

Translating f until its endpoint q(f) touches g.
This subcase is analogous to the second subcase except, that the translation ray is projected
from q(f) instead of p(f).

Translating a circle f until blocked by another circle g.
This case contains three disjoint subcases. The applicable subcase can be determined analytically
by examining the centers and radii of the circles f and g.8

Sin the anomalous situation where f and g are equiradial and concentric either the second or the third case can be

used.
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f

/ -
f2

Figure 9.8: Translating a line segment f until its endpoint p(f) touches a circle g.
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Figure 9.9: Translating a circle f until blocked by another circle g when f and g are outside each
other.

The circles are outside each other.
This subcase is depicted in figure 9.9. In this subcase the circle f is translated until it is
tangent to and outside the circle g. Construct a circle 91, concentric with g, whose radius is
the sum of the radii of f and g. Project a translation ray 7- from the center p(f) of f along
the axis 0. If r does not, intersect g, then this subcase does not limit the translation of F
along the axis 0. However, if r does intersect gi then it will do so atr two points, pt and P.,
which may degenerate to the same point. The shorter of the distances from p(f) to v) and
from) p(f) to P2 is a limit on the translation of F along the axis 9. The position of f after the
translation is depicted as f, in figure 9.9.

The circle f is inside g.
This subcase is depicted in figure 9.10. In this subcase the circle f is translated until it is
tangent. to and inside the circle g. Construct, a circle gl, concentric with g, whose radius is the
radius of g minus the radius of f. Project. a translation ray r from the center p(f) of f along
the axis 9. Note that r must. intersect g, at a single point pl. The distance fromn p(f) to p,
is a limit, on the translation of F along the axis 0. The position of f after the translation is
depicted as fl in figure 9.10.

The circle g is inside f.
This subcase reduces to the second subcase by translating g in the opposite direction 9 + 7r
until blocked by f.

Rotating a line segment f until blocked by another line segment g.
This case contains four subcases, all of which must be considered. The tightest limit returned by
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Figure 9.10: Translating a circle fr until blocked by another circle g when f is inside g.
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Figure 9.11: Rotating a line segment f until its endpoint p(f) touches another line segment 9.

any of the subcases is the limit returned by this case.

Rotating f until its endpoint p(f) touches g.
This subcase is depicted in figure 9.11. Construct a circle c whose center is the pivot point p
and whose radius is the distance from p to the endpoint p(f) of line segment f. This circle
will be called a pivot circle. If c does not. intersect line segment g then this subcase does
not limit the rotation of F about the pivot point p. However, if c does intersect g at a
single point Pi then O(p, p(f)) - O(p, P1 ) is a limit on the clockwise rotation of F about the
pivot point, p while 0(p,pi) - O(p,p(f)) is the corresponding limit, in the counterclockwise
direction. If c intersects g at. two points P, and P2 then the larger of O(p,p(f)) - (j), 1)
and O(p,p(f)) - O(P, P2) is a limit on clockwise rotation while the larger of O(p, pl ) - O(p, p(f))
and O(pp2) - O(p,p(f)) is the corresponding limit in the counterclockwise direction. The
position of f after the maximal clockwise rotation is depicted as f, in figure 9.11. Ignoring
limits introduced by other subcases, the position of f after the maximal counterclockwise
rotation is depicted as f2 in figure 9.11.

This case has a boundary case to consider when the pivot, circle c intersects g at one of its
endpoints. If either pi or p. in the above discussion is an endpoint of g then that point is
considered as an intersection of c with g, for the purposes of limiting the rotation of f only
if I0(f)-0(p(f),p)I < L when normalized. This boundary case is illustrated in figure 9.12. 1I1
figure 9.12, the endpoint, p(g) of line segment g limits the rotation of f but not the rotation
of f'.
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Figure 9.12: A boundary case of the case depicted in figure 9.11 occurs when the pivot circle c
intersects an endpoint of g. In this case, the endpoint p(g) of g limits the rotation of f but not the

rotation of f'.
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Rotating f until its endpoint q(f) touches y.
This subcase is analogous to the first subcase except that tile pivot circle i., constructed with
a radius equal to the distance from p to q(f) instead of the distanlce- from t' to t)(f).

Rotating f until it touches the endpoint p(y).
This subcase reduces to tile first subcase b, rotating y il tile opposilt direction until p(')
touches f. (Clockwise limits become counterclockwise limits and vice versa.

Rotating f until it touches the endpoint q(y).
This subcase reduces to the second subcase by rotating g iln the opposite direction until q(y)
touches f. C(lockwisc limits become counterclockwise limits and vice versa.

Rotating a circle f until blocked by a line segment g.
This case contains three subcases, all of which must be considered. The tightest liiit ret urned b%
any of tile subcases is the limit returned by this case.

Rotating f until it is tangent to y.
This subcase is depicted in figure 9.13. Construct two lines segments,, g and g2. parallel
to and on either side of the line segnment y, separated from q by a distance equal to the

radius of the circle f. The endpoints of g1 and g,2 are those that result from mnoving ihe
endpoints of g a distance equal to tile radius of f along axes which are perpendicular to y.
The line segments gi and g-2 are the potential loci of tile center of f if it were tangent
to y. Construct a pivot circle c whose center is tile pivot point p and whose radius is the
distance from p to the center p(f) of the circle. If c does not intersect either YJ or g.

then this subcase doe. not limit the rotation of F about the pivot point p. However. if c
does intersect g1 at a single point. p, then O(p,p(f)) -O(p.lpm) is a limit oil tile clockwise

rotation of F about the pivot point t) while O(p.tj ) - O(p. p(f)) is the corresponding limit
in tile counterclockwise direction. If c intrsects 91 ti I ",, points P; and p.2 theii the Frger

of O(p. p(f)) - O(p, pl) and O(p, p(f)) - O(p, t12) is a limit on clockwise rotation while Ith larger
of O(p, Pl )-O(p, p(f)) and O(p. •p )-O(p. p(f)) is the corresponding limit in the counterclockwise
direction. Likewise, if c intersects 92 at a single point q, then O(p, p(f)) - O(p. ql ) is a limit on
clockwise rotation while O(p. q, ) -O(p, p(f)) is the corresponding limit in tihe counterclockwise
direction. If c intersects 92 atr two points q, and q2 then tile larger of O(p.p(f)) - O(p. q)
and O(p,p(f)) - O(p,q4) is a limit on clockwise rotation while the larger of 0(p. q, ) - 0(p. 1(f))
and O(p, q2) - O(pp(f)) is the corresponding limit in the counterclockwise direction. The
position of f after the maximal clockwise rotation is depicted as fl iln figure 9.13 while the
position of f after the maximal countnterclockwise rotation is depicted as f,.

Rotating f until it touches the endpoint p(g).
This subcase reduces to the second subcase of the next case by rotating the line segment inl
the opposite direction until its endpoint p(g) touches the circle f. Clockwise limits become
counterclockwise limits and vice versa.

Rotating f until it touches the endpoint q(g).
This subcase reduces to the third subcase of tile next case by rotating the line segument y in
the opposite direction until its endpoint p(g) touches the circle f. Clockwise limits become
counterclockwise limits and vice versa.

Rotating a line segment f until blocked by a circle g.
This case contains three subcases, all of which must be considered. The tightest limit returned by
any of the subcases is the limit returned by this case.

Rotating f until it is tangent to g.
This subcase reduces to tile first subcase of the previous case by rotating the circle f in



9.2. TRANSLAPION A.NI) HOIATION LIMITS'i 177

... q(g)
q (Y)

14 "-' y1)

q,2~ f2

-~~/7

•" % % %

p.r• -. ' I

Pi

)( P(g)

p(gi )

Figure 9.13: Rotating a circle I until it is tangent to a line segment g.
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Figure 9.1-4: Rotating a line segment f until its enidpoinit 1)(f) tou1ches a Circle Y.

thie opposite direct ion until it is tangeun to the liue segitent g. C lockwise limits become
counterclockwise limits and vice versa.

Rotating f until its endpoint p(f) touches g.
Thiis su bcase is depicted iin figure 9.141. Coust rilt I pivot circle c whose cenjter is thle pivot
p)oinlt 1) and whose radius is the (list amce fromi 1 to the eiidpoinit 1)( f) of 11w linle segmentul If r
does not intersect thle circle y then this subca-se does not limitit the rot ation of F abouit I lie
pivot point 1P. However, if c does intersect y then it will do0 So) at the t wo pointis. pjl amoid
which may degenerate 1.o thle same point. The larger of 0( p. 1,(f ) ) - 0( p. 1'j ) awid 0(p. {f) ) -

O(jp. p-) is a liniit on the clockwise rot ation of F about the pivot poitit 1, while thle larger

of9(.p )-00"p HMf) and 00. ' )9p. 1,( f ) )is t lie corresjpoiidig linmit ini tIIe count erclockwise'
(lirect ion. Ignoring limits utrodliced by other sutbca.-ws, thle posit io of f after thle miaxim al
clockwise rot at iou is depicted as f) III figiure 9.1.1 while the posit iou of f after t lie mtaximial
counterclockwise rot at iou is depict cd as f2
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A 0

Figure 9.15: Rotating a circle f until blocked by another circle g when f and g are outside each
other.

Rotating f until its endpoint q(f) touches g.
This subcase is analogous to the second subcase except that the pivot circle is constructed
with a radius equal to the distance from 1 to q(f) instead of the distance froit 1) to 1)(f).

Rotating a circle f until blocked by another circle q.
This case contains three disjoint subcases. The applicable subcase can be determined analytically
by examining the centers and radii of the circles f and g.

The circles are outside each other.
This subcase is depicted in figure 9.15. In this subcase the circle f is rotated until it is tangent
to and outside the circle g. Construct a circle gi, concentric with y. whose radius is the suni
of the radii of f and g. Construct a pivot circle c whose center is the pivot point 1) and
whose radius is the distance from p to the center p(f) of f. If c does not intersect g, then this
subcase does not limit the rotation of F about the pivot point 1). However. if c does intersect g,
then it will do so at two points. p) and p.,. which may degenerate to the same point. '[le
larger of O(p. p(f)) - 0(p. p') and 0(j,. P(f)) - O(p. p-2 ) is a linil on the clockwise rotation of F
about the pivot point r while the larger of 0(j,. 1), ) - O(p. 1)(f)) and O(). ,2 ) - O(1,. 1)(f)) is t he
corresponding limit in the counterclockwise direction. The position of f after the maximal
clockwise rotation is depicted as fj in figure 9.15 while the position of f tfter the maximal
counterclockwise rotation is depicted as f2.

The circle f is inside 9.
This subcase is depicted in figure 9.16. In this subcase the circle f is rot ated unt il it is t aigent
to and inside the circle y. (C'onstruct a circle 9.1 concentric with y. whose' radius is the radius
of y minus the radius of f. ('onsiruct a pivot circle c' whose center is tlihe pivot point 1, and
whose radius is the distance fronm1 p to the center p(f) of f. If c does IIot intersect g, then this
subcas.e does not limit t he rot at ion of F about the pivot point p. However, if c doe's nt ersect g,
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Figure 9.16: Rotating a circle f until blocked by another circle 9 when f is inside g.

t.he,- it will do so at. two points, P, and p.2. which may degenerate to the same point. The
larger of O(pqp(f)) - O(p.pl) and 0(!,,p(f)) - 0 (p.p,2) is a limit on the clockwise rotation of I
about the pivot point p while the !- rger of O(p. pl) - O(pp(f)) and O(p0_,) - O(p.1)(f)) is the
corresponding limit in the counterclockwise direction. The position of f after the maximal

clockwise rotation is depicted as fl in figure 9.16 while the position of f after the maximal
counterclockwise rotation is depicted as f2.

The circle g is inside f.
This subcase reduces to the second subcase by rotating y in the opposite direction until
blocked by f. Clockwise limits become counterclockwise limits and vice versa.

9.3 Complications

The algorithm presented in the previous two sections is only a framework for kinematic simulation. It
handles only the general cases, not the complications caused by the mnany anomalous special cases that
arise during actual use of the simulator to support analysis of animated stick figure movies like the one
described in section 6.1. This section discusses sonie of these complications and how to deal with thenm.
During the development of ABIGAIL the process of discovering that these anomalous cases existed, and
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l hie determiininig how t o correct Iy deal wit Ii 111heiji, as subst5 aiit ja~ll liorc difficult aiid 1,,k silgiiiticaiit l\
iiort, ttiie, and eflOrt than iiiipleiientiitg thle genieral case. Ouii iiav ask whet her it Isleesr ohnl

all of' t hese special cases. Many of' thlese- special cases were, discovered bcawse I he te~lefl lt~rceilt)l
Iiiecfialiisiii b~uiilt oil top) of' thle inimiiaiatioii capacity w ~ouild produce 11wi wrong results ducw I" ilic)rr1ect
haindliiig of these aiioiiialous case-,. n or examiple. p'rior 1() dealing "it il roundoll' -rrurý. olflects would
my~st eriously and unpredict abl) fall through the floor bo.r rea.sons which will he discussecd ill se-ct ion:m

9.3.1 Clusters

As describr~d ill sect ion 9.1. at each step) during Imiaginiat ion. the( kinemnat ic simiulat or will ativeinpip to
translate ce: rot ate a single set of figures. tlie( foreground. leaving the remiaining figures, thle bac kgrounid.
st~ationary. Foregrounds were choseiu as, connected compl~onients iii tille connlect ion graphi of the Iimagi'.

i.e. setts of1 figures connected by joints. Figure 9.17(a) depicts problems t hat arise, w it Ii tis simnple chloic
of foregrounds. Theli figure shows two interlocking yet distilict objects. -1 and B. Since they are- not joined
together they constitute separate connected compilonenits and wvill be considered as separate foregroundl
for tranislat ion and~ rotat ion. However, when at tempifting to t ranislate A1 downiward alonje. 1B blocks all\
dfownward tmot ion of .A. Likewise. wheni attemnpt ing to translate 13 downward alotne,. 1 blocks any
downwardI motion of 1B. Thus nieithier . inor B will fall when simulated. Tll,\- wilt ..... ain suspended inl
mid-air. This samne sit uat ion happens not only for the case, of falling: it canl happeti for all of' tIle- types
of nmovenuent con.;idered ini sect ion 9.1 . TIhis includes falling down, f'alling over, sliding along a linear
or circular surface, and varying a Joint'*s flexible rot at ion and t ranislat ional or rotational dlisp~lacemienit
p~aratmeters. Figure 9.17(b) depicts two objects Jointtly sliding down ali iniclined plane. Figure ¶1. 1(c)
depicts two objects jointly falling over. Figure 9.17(d) shows how the problemi canl arise when %aryilig
the flexible rotation paramneter of a *joitnt whichi would jointly pivot two interlocking ob ject s about thfat

joint . It occurs even wit houit int~erloc kitig objects. Th'le heavy ball iii figure 9. 17(e) will not ptisl i lle
see-saw dlown since thle ball aind see-saw are distinct coninect ed comiponentst and~ t lius they,% will not rotate
toget her around t he pivot. Thle see-saw prevenlts downward miovemuenit of Ilt heball. Yet Ilth e-a alone,
will not rot at-oe since rotating it alone will Increase its potenit ial energy.

Thle solution to this problem Is coilicept uiaflv simple. T'reat A and 13 toget her as a single foreground
called a cluster. More generally. the( solut ion call be stated as follows. Fortii all connected comnpo
nents F1j,. ... F,, inl the connect ion graph of the image. 'Iwo contnect ed colpnl~lents are, saidf to t olii(I
if some figure from one touches somie figure fromt the ot her. C onsider as a foreground, all clusters T'
that are tinion sets of a collect ion of connected cotmponenits. i e. 1',, U .. U V,-, where the, collection of
connected components is itself connected by thel component totiching relation. Whiein varying a flexible
p~aramieter of a Joitit j, only clust ers which do0 tnot cont amn hot Ii f (j) and y(J ) are cotisidlered.

The( above solution has a drawback, however. It becomes initract able when t here is a large, set of
coiiiiect~ed conilpomient s Iliat are, couu mected ty lie touchiing relat loii s~iace every subset of that set whichl
15 still cotnnect ed by the touchitig relation must bel considered as a cltust er. lHiis situtation (does arise lin
p~ract ice inl at least oiie case. AB~IA it. begins wat cliing a movie withI an emupty joinit miodel. Ohbject s
containing mainy figures which will later be treat ed as a sinigle connectedl comipolieli (file, to( joints 11(31

ve ypothesized will init ially be t reat ed as clusters. While two joinied figures will always be (-(lisitee
as part of the same foregrom id, two touching but iiijoined figuires are only opt ioiiallv colisidlere,4l as part
of thel same cluister. Such nondetermiiiuisiii In tilie choice, of clustered foregroundls with hti an eptY jomint

tmodel leads to intractability iii the kinematic siimtlator. 'Fliis hintractabilit v is ehimiiuiated lin Ilw eurrelit
Imupleuientat ion by forniming clusters only otic.'it allint iai joint lwitodel has beenl forlitiuatel.d
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Figure 9.17: These situations require cluster movement. When attempting to move either object A
or B alone, one will block any motion of the other yielding anomalous simulation results where

objects A and B remain suspended but unsupported. The solution is to treat .4 and B as a single
clustered foreground and attempt to translate or rotate them together.
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9.3.2 Tangential Movement

Section 9.2 presented analytic methods for calculating the (iiaximnal ainoulit that one figure, can tralNs!at

or rotate until blocked by another figure. The methods presented dealt only witll thl ion-degi-nerate
cases. Some of the conmputations required finding the intersection between a translation ray and a liii,'
segment. %\Vat happens if the ray is coincident with the line segiment'. lit t hin case. they nitersect at

infinitely many points. This degenerate case can arise when one line segnielit slides along anot her. Other
computations require finding tile intersection between a pivot circle and another circle. \Vhat happen. if
the two circles are concentric and equiradial? Ini this case again, they intersect at infinitely iiany points.
This degenerate case can arise when pivoting a line segineiit that lies inside a circle about lie center of
the circle, so that its endpoint slides along tile interior wall of the circle.

In general, all such degenerate cases involve movement tangent to sonie surface. Though the abovy
cases of tangential movement resulted in degenerate computation of intersection points. tangential miiove-
ment need not produce such degeneracies. One example of such a situation would beh the ranslation
of a line segment until its endpoint was blocked by a circle. If the translation ray is tangent to Ilie
circle, it intersects the circle at one point instead of two. Sometimes. a surface that is tangent to the
direction of motion does not block motion of the foreground. The first two examples are illustrations
of such situations. In other situations, a surface that is tangent to the direction of motion can block
motion of the foreground. Tile third example depicts such a situation. Each of the eight cases discusseld
in section 9.2, and all of their subcases. must be analyzed in detail to determine when the background
blocks tangential movement of the foreground, and when it (toes not. Detailed inalysis of each of these
cases has demonstrated that. in all cases where f does not touch g. if g would limit tangential moVe-
ment f then that movement would be even further limited by some other non-tangential case. Thus t ie
limits introduced by tangential movement can be ignored when f does not touch g. \Viien f touches y.
however, g may or may not totally limit aniy tangential movement of f depending on the situation.
This analysis for each of the ten irreducible subcases is summarized below and depicted iii figures 9.1S
and 9.19.

Translating a line segment f until its endpoint p(f) touches another line segment g.
Tangential movement arises in this subcase when the translation ray r is coincident with y. A line
segment. g never limits tangential movement of another line segment f. This case is depicted it
figure 9.18(a).

Translating a circle f until it is tangent to a line segment g.
Tangential movement arises in this subcase when the translation ray r is coincident with either yi
or g). This subcase never limits tangential movement. This subcase is depictedl in figure 9.18(b).

Translating a line segment f until its endpoint p(f) touches a circle g.
Tangential movement arises in this subcase when the translation ray r is tangent to circle g. This
subcase limits tangential movement only when f is inside g. This is the case only when 10(f) -

O(pm ,p(g))I < 1 when normalized. The subcase where q blocks f is depicted in figure 9.18(e). while
the subcase where g does not block f is depicted in figure 9.18(c).

Translating a circle f until blocked by a circle y when f and y are outside each other.

Tangential movement arises in this subcase when the translation ray r is tangent to g1 . This
subcase never blocks tangential movement. This subcase is depicted itt figure 9.18(d).

Translating a circle f until blocked by another circle g when f is inside y.
Tangential miovenment arises in this subcase when t(lie translation ray r is tangent to .i. "his
subcase always blocks tangential movement. This subcase is depicted in figure 9.18(f).
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f f0

g g

(a) (b) (c) (d)

(e) (f)

Figure 9.18: An analysis of all cases where the translation of the foreground figure f is tangential to
the background figure g. In cases (e) and (f) g blocks movement of f while in the remaining cases

it does not.
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Rotating a line segment f until its endpoint p(f) touches another line segment Y.
Tangential movenent arises in this subcase when the pivot circle c i.- tangent to y+ This., sulwcase
limits tangential movenkent only wh- 10(f) - 0(p( f). p) > , when normalized. A I,•undar cast-e
arises when 10(f) - 0 (p(f).t,) = This boundary case will be discussed in section 9.3.3. -l,.
st bcase where y blocks f is depicted in[ figure 9.19(b). while lie subcase where q doe.s not block f
is depicted in figure 9.19(a).

Rotating a circle f until it is tangent to a line segment y.
Tangential movement arises in this subcase when tile pivot circle c is tangent to either !1 or y-2
This subcase limits tangential movement only when p and p((f) are oil opposite sides of ol or
when p is closer to y than p(f). These two subcases where y blocks f are depicted in ligure 9.19(d)
and 9.19(e) respectively, while the subcase where g does not block f is depicted in figure,.1l(c)

Rotating a line segment f until its endpoint p(f) touches a circle Y.
Tangential movement arises in this subcase when the pivot circle c is tangent to y. There are three
subcases to consider.

c is inside y.
This subcase limits tangential movement only when f is outside g. This is tle case only
when 1O(p(f),p(y)) - 0(f)l > 1 when normalized. The subcase where y blocks f is depicted
in figure 9.19(k). while the subcase where g does not block f is depicted in figure 9.19(h).

g is inside c.
This subcase limits tangential movement only when f is inside y. This isi thle case only
when JO(p(f).p(!)) - 0(f)I < w when normalized. The subcase where q blocks f is depicted
in figure 9.19(j). while the subcase where y does not block f is depicted in figure 9.19(g).

g and c are outside each other.
This subcase linits tangential niovement only when f is inside y. This is the case only
"when 10(p(f),p(q)) - 0(f)j < . when normalized. The subcase where y blocks f is depicted
in figure 9.19(i), while the subcase where y does not block f is depicted in figure 9.19(f).

Rotating a circle f until blocked by a circle g when f and g are outside each other.
Tangential movement arises in this subcase when the pivot circle c is tangent to gi. This subcase
limits tangential movement only when c is inside !11. This is the case only when <(p(y). ,) <
A(p(y), q(g)) + A(p(f), q(f)). The subcase where g blocks f is depicted in figure 9. 19(m). while
the subcase where g does not block f is depicted in figure 9.19(l).

Rotating a circle f until blocked by another circle g when f is inside y.
Tangential movement arises in this subcase when the pivot circle c is tangent to 1.q- This subcase
limits tangential movement only when c is outside q.q- This is the case only when A(p(y).,p) >
A(p(g), q(g)) -A(p(f), q(f)). The subcase where ! blocks f is depicted in figure 9.19(o). while the
subcase where g does not block f is depicted in figure 9.19(n).

9.3.3 Touching Barriers

Section 9.2 presented analytic methods for calculating the maximal translation or rotation of one figure
until blocked by another figure. The methods presented dealt only with the non-degenerate case of
movement by some nonzero (. When however, a figure f to be moved touches a figure y. y inay lprevent
any movement of f along a given axis or in a given direction about a given pivot. In such cases,. the
analytic methods front section 9.2 will yield ( = 0. If movement of f is indeed blocked by g then this
is the correct solution. But there are cases where the analytic methods incorrectly yield f = 0t even
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Figure 9.20: The analytic methods for determining inaximuni translation and rotation yield t= f

when two figures touch. Sometimes moveinent is indeed blocked in this ,siluation. a. in (a). whilh

other times, movement is not blocked. as in (b).

though f is not blocked by g. This happens when f touches g but is onl the other side of y given) it.,

direct ion of movement. Figure 9.20 shows how this can arise when translating one line segment relative
to another line segment. In figure 9.20(a). g blocks translation of f while in figure 9.20(b). ydoes uot
block translation of f. Analogous situations occur when translating or rotating any figure type relative
to any other figure type.

To deal with this problem, the analytic methods must be augmented to determine whether .q is or is

not a barrier to the movement of f when they would otherwise yield 0. All of the cases and subcases
can be handled by the same general technique which operates as follows. The maximal movement t will
be limited to zero only when f and g touch. Denote their point of conlact by q. Form a line I through q
as follows. If g is a line segment then it is extended to form I. If g is a circle then I is the line tangent to y
at point q. This harrier line divides the plane into two half-planes. The figure f will lie in at meost one of
these half-planes. Let o be the direction of the movement of f. A ray projected from q in the direction C
will also lie in at most one half-plane. The figure y blocks the movement of f only when f does not lie in
the same half-plane as that ray. Applying this technique to each case and subcase requires determining
both the half-plane in which f lies as well as the direction of movement o. The former depends otl the

shape of f. If f is a line segment. one endpoint lies on I at the point of contact q. The other endpoitt
occupies the same half-plane as all of f. If f is a circle, its center p(f) occupies tile same half-plane as all
of f. Thus determining the half-plane occupied by a figure f can be determined by examining a single
point which I will denote as q'. When translating f along an axis 0. the direction of movement 0 is the
same as 0. When rotating f aboutt a pivot point p, the direction of movement is given by the direct ion

of a ray projected from the contact point q tangent to a circle c whose center is 1 and whose radius is
the distance from p) to q. For clockwise rotation this is ((p.q) - •, while for counterclockwise rotation
this is 0(p, q) + 1.

Given a barrier line 1. a direction of movement o. anid a point q'. g blocks the movement of f only
when a ray projected from q', along the axis o, intersects I. When applying this check to each of the cases
and subcases one must remember that some of the cases determine whether g blocks the movement of f
by determining whether f blocks the movement of y is the opposite direction. Each case and subcase
must take this into account when computing the parameters I. o. and q' for this check procedure.

The above check whether g blocks the niovement of f can be viewed as a boundary case of the more
general case of movement discussed in section 9.2. This boundary case itself has two boundary cases.
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On-e oCCurs when the directilon of jinovemite-t o is parallel to the barrier hiule I I Ill t his a-t leitlier

hlalf-plane is in front of or behind the figure f. This case is covered by the ltangelnt ial IIoveniellt cases
discussed is section 9.3.2. 'I'li ot hetr occur,,s when q' lies on Ihe barrier linel. Ii in this ta.,, f do(,nts f( it. int
either half-plane. Aln anibiguity arises as to which side of I figure f lit'. on his call only happt.il w\lit-, f
is a line seglinen. When g is a circle. J call only lmove in a direction that will kt-elt it outsid, q Aual%1i"
nmethods simiilar to those discussed above (vani deterimine thl•' allowed direction ol iloveNi'll\it. hlie y is

a line segmnent, howexer, a genuine amnbiguity arises. This call only happen when f is coimnidenit with iq
as is depicted in figure 9.21(a). hit this case it is genuilnely anllh)iguous a. to which side of q th(e figure, f
lies on. This situation therefore admits only two consistent interl)retat ions. Either y blhAks or d,,,'sn'
b)lock f uniformnly for any type of Iovement. Adopting tlit, latter interpret at iou wouhl lead to prolth.in,
since objects then could fall through the floor. Adopting thlie forui,,r interlpretation. howtver. leads to
the anomalous situation depicted iii figure 9.21(b) where John fall, on his knee. but dhwsin't fall any
further, since his calf. being coincident to the ground, cannot rotate or translatet. .Xtt.ABIA. adoplt thet
latter alternative, thus exhibiting this anonialy. A solution to tfhis problem would require tie dif. inig tle

procedures described in section 9.3.2 to exaiine thiet context of two figure-,. i.e. other figures coti itecled
to either thle foreground f or the background 9. when determining whether yq Iblock, ,iovte|ii of f.

9.3.4 Tolerance

All of the procedures described in sections 9.2. 9.3.2. and 9.3.3 ,nist bIe niotlifitd to ,thal wit Ih rounditff
error. Roundoff error call introduce gross sulbstantiality violat ions i fliet resulting simulat iti as . tI
itt figure 9.22. Figure 9.22(a) depicts a line segment f falling toward a hIue t-guiient y . Ift Ihli liiii
calculation has roundoff error, it call produce a sit uat ion. depicted ili figure 9.22(b). whlire f is t rat.slat,.,
slightly too far. hi the nIext step of thlie simulation. however, the endpoillt of f is now Ipast (q ald t hu.s a
translation ray projected from that endpoint will 0ot intersect q. Thus- : n licit shI' trauslatit ,, ,f f t,)1%

t'o the position indicated in figure 9.22(c). At this point. f call fall away from .q. as in figure 9.220 1). sinue,
iii figure 9.22(c). y does not block f iti its direction of inovenent,. Thus u(lit' it) slight rtunht Idlferrr in t flit
transition from figure 9.22(a) to figure 9.22(b). f is able to pass through q ..Xs figure 9.22 show,. r(ti ohEff
error call introduce gross deviations from t the desired simulation. not just iniior d itlt'ren'es. Ac,-t rdit-gl..
ABIGAIL incorporates a niotion of tolerance whenever deterininiig whether twt, ligtres tlouch. m, t hat

figure 9.22(b) is interpreted as all instance of touching barriers to be handled via the lnth'ot .Ittscrihli.I
tin section 9.3.3. Furthernmore. the methods described iii section 9.2 untst Ibt' mnothifitd in ihis t'a.,', it)
return = 0 even though the translation ray does not intersect y.

9.4 Limitations

The kiuetnatic simulator just presented suffers from a severe limit at ion. It cati only collectivel IIraiislat,
or rotate one group of figures at a time. Such collective mlovemuent call correctly situtilat' tilher rigid
body motion, or the niotion of a non-rigid neclianisti where only a single joit p)aramleter cliangi's. It
is not able to correctly simulate the behavior of niechanisnis which require t hat differnt' collections of
figures simultaneously move along different paths. Several such inechanisins art, shown in figures 9.23
and 9.24.

The mechanism in figure 9.23 contains two line segments f, and f2. fastened at the enudpoints t)(f]
and P(f2) by a joint, j with flexible rotation and rigid displacenint lparameters. The enidpoitits q(fJ
and q(f2) are supported on the ground. Sii-ce the micro-world ontology lacks any notion of friction.
the endpoints q( It) anti q( f2) should slide apart along the ground while Ith(e flexible joili rotat ott O(j)
increases until both f, and f. lie flat on the ground. ABIGAIL. however, is not able to predict this mnotion
since it requires simultaneously rotating the line segments f, and f-, it) opposite directions. as well as



U..4. LIMIITATIONS

(a)

Q0

(b)

Figure 9.21: An ambiguous situation occurs when the foreground f and background g are two coin-
cident line segments. In this situation it is not possible to determine on which side of the background
the foreground lies. Because of this ambiguity. Abigail will neither translate nor rotate f relative
to g for fear of violating substantiality as depicted in (a). A case where this arises in practice is de-
picted in (b). Once John falls on his knee he will not fall any further, since his calf. being coincident
with the ground. cannot rotate or translate.
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f

00

(a) (b) (c) (d)

Figure 9.22: Roundoff errors during simulation can cause substantiality violation,, an, result in gross
deviations from the desired simulation. Here an object f falls toward an object y. Ordinarily y should
block tne fail of f. Roundoff error during step (b), however, causes a substantiality violation. Since
the endpoint of f is now past g. a translation ray projected from that endpoint will not intersect q
and thus g will limit the movement of f only until the position indicated in (cl. Since in (c). y doe,
not block f in its direction of movement, f can fall from y as in (d). Thus due to the roundoff error
in (b), f falls through g.

ýZ 
f2

q(f,) q(f2)

Figure 9.23: A mechanism whose behavior Abigail cannot predict. This mechanism has two line
segments f, and f2, and a single joint j, where f(f) = fl. g(j) = f2, 0()) is flexible. hf(j) =
0 and 6,(j) = 0. The endpoints q(fi) and q(f_) should slide along the ground while 0(j) increases

until f, and f2 lie flat on the ground. Abigail is not able to predict such motion since it requires
the simultaneous rotation and translation of f, ard f2 along different paths.
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j2

f, "j

jo 
fo

Figure 9.24: A four bar linkage. Vsing the terminology of this tthesis. this linkage can be described
as four line segments fJ ..... fý and four joints .o..... Jr where for I = t ..... 3. ffj,) = f. 911, ) =
f,+Imod4, f( , ) = t). b(j,) = 1. and Y(j ) is flexible. Abigail cannot predict the behavior of such
linkages since changing the rotation parameter of any joint would require the simultaneous motion
of at least three line segments along different paths,.

translating them collectively downward, in order to decrease the potential energy of the mechanism.
Any one of these movements alone will increase the potential energy so no inoveiient will Ibe attempted.

The mechanism in figure 9.24 is a classic four Iar linkage. It contains four line segments fn..... fi
joined at their endpoints by four joints J a.Ja wit h flexible rot at ion and rigid disp)lacement p)arameters.
Assuming that one of the line segments has a fixed position and orientation. changitn, tlite rotation
parameter of any one of the joints will cause all of the joint rotation parameters to change and the
remaining line segments to translate and rotate along different paths.

Both of these mechanisms share a common property. They have a cycle in their connecthion graph."
The cycle in figure 9.24 is apparent. The cycle in figure 9.23 results from the fact that due to the
ground plane constraint, the mechanism behaves as if the ground was a line segment q and figures f,
and f 2 were joined to y by joints with flexible rotations. rigid displacements along fJ and f,2. and flexible

displacements along y.
ABIGAIL can only accurately predict the behavior of mechanisms whose connection graphs do not

contain cycles.1ft This includes both explicit cycles due to joints as well as implicit cycles dutme to the
ground plane and substantiality constraints. This means that the kinematic simulat or used to implehnnt
ABIGAIL's imagination capacity is not cognitively plausible since people can understand the' behavior
of such mechanisms. While a person might not be able to accurately calculate the exact quantitative
relationship between the motion of parts .4 and B in mechanism shown in figure 9.25, she nonetheless
could at. least predict that pushing A will cause B to move and perhaps even predict the direction of
motion.

9.5 Experimental Evidence

Spelke (1988) reports a number of experiments that illuminate thie nature of infant visual perception.
Most of these experiments use the paradigms of habituatiotn/dishal)ituatioli an(l l)referential looking

'The connection graph of a mechanism is a graph where the figures constitute the vertices and there is an undirected
edge between two vertices if their corresponding figures are joined.

1
OShe can still watch movies that depict such mechanisms without breaking. She will just treat a cyclic mechanism a>s a

rigid body.
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Figure 9.25: Abigail's imagination capacity is impoverished with respect to human imagination
capacity. While humans can predict that pushing A will cause B to move. Abigail cannot make
such a prediction since the connection graph of this mechanism contains cycles and the kinematic
simulator used to implement A bigail's imagination capacity cannot handle cycles.
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as windows onl infanti perceptilonl. AgPeiieral propiert y of' tilt- liervolis Svsteiii is that It haluar uaes 1(

repeated st inuli. 'lthe level of response elicited fromi repeated appl)icat ioie of)I similiar ~tiniiili decrease.,
whien compared withI thet initial applicatilonl of' tilt' st iiniils. After habitunat ion however. ap~plicat ion ol'
a novel st iiulMus Will again elicit a greater level of resp onse. S'Inice this dishabir nation happen, only for

novel stimulil It call be used as a probe to determiine whet her two stinmuli are characterized as simillar
or dlifferent. 'lthe experiment al frainiework is as follows. Subject s are, first hablit nated to st inutltius .1 and
then exposed to stimjulus 11. AIt ernat ively. t hey are habituiated to .1 and lien exposed to ( *. Ak -real er
level of dishabittuatioii for C than for 11 is taken as evidence that B Is classified as miore simiilar ti) .1
than C is. In the case of' infanits. t lhe response level is often inieastired by preferential looking.' niciasilriiig
helt antount of time they look at a piresent ed st iniul us. or at o11t' st ilititius versuis aniot her.

Spelke reports two experimients which give evidence that by age five mont hs. children are, aware oft llie
stibstant~iality constraint. The first experiment was originally reported by Blaillargeon etl al. t, I 95)ý This
exp~erimienit is illust~rate el in figure 9.26. Inf'ants were habitunated] to a sceiiario depicting a screvii . I nit ially
the screen lay flat onl its front. Subsequent[%-, it lifted upwards aiid rotatedl backwards until It lay flat onl
its back. Finally, its mjotion was reversed uint il it again lay flat oii its front. To nmake t his miot ion clear.
both front. and side views are dlepict ed in figure 9 .26i(a). thbough the actunal stimulus in) lie expernimenil
contIainedl only thle front view. The two disha bit uat lot stiinnuli are, shown iii figures 9.2t6(b ) aiid 9 .26(c)
InI hothI, a block is situated behind the screen such t hat it is occluded as tilie screeni is raised.'l The first
dlepicts a possible event: the screen only rotates as far back as it canl withbout peniet rating tilie occludled
block. The second depict~s ali impjossib~le event: the screen continues to rot ate ISO'. 1'iiless tilte block
dlisappears. this would constitnite a substant iaiityv iolation. frive-ioiithl-old inf~ants dishabit nate, imore to
the latter scenario thani the former. This is interpreted as evideince t hat they Interpret hot h scenarios (a)
anl(l (b) as normal but scenario (c) as abnormal. Baillargeoii ( 1987) rep~orts coiit niiine(] experiimeints aloiig
these lines which show that childreni are attentive to substantiality violations by age I -iioiithls aiid

perhaps even by age 31-iiioiitls. Baillargeon (198t6) reports add~itionial experimienits which show t hat
children take the location of hidden objects into account iii t heir desire to uiphold thle stibst aiitialitv
constraint..

Spelke reports a similar experiment. performed jointly with MiNacomiber aiid Keil onl fomr-niont li-old
infants. This experim-ent is depicted iii figure 9.27. Here. the Inifants were habituated to thle following
scenario. Ani object was dropped behind a screen. 'FThe screeii was then lifted to reveal thet object lyinig
onl the ground as shown in figure 9.27(a). The two disliabitnation stlimuli are shown iii figure 9.27(b)
and 9.27(c). In hoth,. a table appears lin the pa~th of the falling object when the screen Is removed.
The first depicts the object lying onl the table-a different posit ion t han lin the habitunat ion scenario.
The seconid depict~s the object lying underneathI the t able-in thle same positioni as in the habitunat ion
scenario-vet one which cannot be reached without, a substantiality~ violat ion. Four-niontli-old infanits
dishabituate more t~o the latter scenario than the former, again giving evidence that t hey. are, cognizanit
of the substant~ialit~y constraint by age four months.

Spelke reports that Macomber performed a variation of the previous experiment in attempt to (de-
termine the age at which infant~s know about gravity. This variation is depicted in figure 9.28. Infanits
were habituated to anl object falling behind a screen with the screen being removed to reveal the object
lying onl a table. In both dishabituation stimuili. the talble top was removed. lit the first (ilisafbittnat iou
stimulus, removing the screen revealed the object at rest onl the floor. heticath its, original position Onl
the table top. while in the second, removing the screen revealed the object at the samef posit ion as it.
was in thet habituation scenario. This time however, the object, was suspetidcd uinspported lii mild-air
due to the disappearance of the table top. Spelke reports that. four-miontit-old infants dishiabituate more
to t lie former scenario than the latter, implying that they do not. yet forni correct juidgments based] onl
gravity all(J support.

At some point, however, childrein (0 come to possess knowledge of gravity and support. The omily
qtuest~ion is at what point they do so. I conjecture that such development happens early. If the analysis
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-I I \_ side.view

w - FI E L front view

(a) Habituation stimulus

j _ rF ma F-1ii Fý
(b) Dishabituation stimulus depicting possible event

(c) Dishabituation stimulus depicting impossible event

Figure 9.26: Displays for an experiment demonstrating infant knowledge of substantiality. (Fig-
ure 7.7 from Spelke (1988).) Infants habituated to sequence (a) dishabituate more to sequence (c)
than to sequence (b). Since sequence (c) depicts a substantiality violation, this is interpreted as
evidence that five-month-old children have knowledge of substantiality.
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(a) (b) (c)

Habituation Dishabituation Dishabituation
stimulus stimulus depicting stimulus depicting

possible event impossible event

Figure 9.27: Displays for an experiment demonstrating infant knowledge of substantiality. (Fig-
ure 7.8 from Spelke (1988).) Infants habituated to sequence (a) dishabituate more to sequence (c)
than to sequence (b). Since sequence (c) depicts a substantiality violation this is interpreted as
evidence that four-month-old children have knowledge of substantiality.

I½ I) i

(a) (b) (c)

Habituation Dishabituation Dishabituation
stimulus stimulus depicting stimulus depicting

possible event impossible event

Figure 9.28: Displays for an experiment testing infant knowledge of gravity. (Figure 7.9 from
Spelke (1988).) The conjecture was that infants habituated to sequence (a) would dishabituate
more to sequence (c) than to sequence (b), since sequence (c) depicts an unsupported object. This
exi-ted result was not exhibited by four-month-old infants.
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from chapter 7 is correct, and the inealings of so mnany everyday simnple spatial miiot ion verbs depend oil
the concepts of gravity and support, then thie knowledge of gravity and supl)ort innust precede thle onset
of language acquisition.

Spelke reports a fourth experiment, done jointly with Kestenbauni. that givt-s evidence that by
age four months, children know that objects must obey continuity. This experimient is depicted in
figure 9.29. Two groups of subjects participated in this experiuent. The first group was habituated
to the scenario depicted in figure 9.29(a). li this scenario, all object passed behind one- screen, as
it moved from left to right, emerged froni behind that screen, and then passed behind and einerged
from a second screen. The second group was habituated to a similar scenario except that no object
appeared in the gap between the screens. An object passed behind one screen and then eiierged froii
the second, as depicted in figure 9.29(b). Both groups received the same two dishiabit uation stimuli shown
in figures 9.29(c) and 9.29(d). One simply showed a single object without the screens while the other
showed two objects without, the screens. The group habituated to (a) dishabituated more to (d) while
the group habituated to (b) dishabituated more to (c). The subjects appear to attribute scenario (a) to
a single object while attributing scenario (b) to two objects. This is interpreted as evidence that by age
four months, children know that objects must move along continuous paths. and( furthermore, a single
object cannot follow a continuous path without being visible in between the screens.

These experiments reported by Spelke demonstrate that infants at a very early age possess knowledge
of substantiality and continuity. Furthermore. they use this knowledge as 1)art of object and event
perception. She offers the following claim.

The principles of cohesion, boundedness, substance and spatio-temporal continuity appear to
stand at the centre of adults' intuitive conceptions of the physical world and its behaviour:
our deepest conceptions of objects appear to be the notions that they are internally con-
nected and distinct from one another, that they occupy space. and that they exist and
move continuously (for further discussion, see Spelke 1983, 1987). These conceptions are so
central to human thinking about the physical world that their uniformity soinetiiies goes
unremarked. In studies of intuitive physical thought,. for example, much attention is paid
to the idiosyncratic and error-ridden predictions adults sometimes make about the motions
of objects (e.g. McCloskey 1983). It is rarely noted, however, that adults predict with near
uniformity that objects will move as cohesive wholes on connected paths through unoccupied
space. This conception, at least., is clear and central to our thinking: it appears to have
guided our thinking since early infancy.

(p. 181]

She then goes on to suggest, that the physical knowledge which underlies object and event perception
precedes linguistic development.

In this context, one may consider the possible role of language in the development of physical
knowledge. Our research provides evidence, counter to the views of Quine (1960) and others,
that the organization of the world into objects precedes the development of language and
thus does not depend upon it. I suspect, moreover, that language plays no important role in
the spontaneous elaboration of physical knowledge. To learn that. objects tend to move at
smooth speeds. for example, one need only observe objects and their motions: one need not
articulate the principles of one's theory or communicate with others about. it.

[p. 181]

Spelke's work attempts to refute the claim that linguistic ability is needed to formulate physical knowl-
edge. This thesis carries Spelke's argument one step further. It suggests that physical knowledge is
needed to formulate linguistic concepts.
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(a) Continuous habituation stimulus (b) Discontinuous habituation stimulus

(c) One-object dishabituation stimulus (d) Two-object dishabituation stimulus

Figure 9.29: Displays for an experiment demonstrating infant, knowledge of continuity. (Figure 7.10
from Spelke (1988).) Infants habituated to sequence (a) dishabituate more to sequence (d) than
to sequence (c), while infants habituated to sequence (b) dishabituate more to sequence (c) than
to sequence (d). This is interpreted as evidence that five-month-old children have knowledge that
sequence (a) involves the continuous motion of one object., while sequence (b) must involve two

objects.
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9.6 Summary

In chapter 7. 1 argued that the notions of support. contact. aiid attachinrelt play a central role in thli
definitions of simple spatial mlotion verbs such as throu-, pick up, put. and ii alk. In chapter t, I presented
a theory of how these niotions call be grounded in perception via counterfactual simlulation. :% silnple
formnulation of this theory has been inmplemnented as a computer programn called ABIGAIL that watches
movies constructed out of line segments and circles and uses counterfactual simnulation to produce de-
scriptions of the objects depicted in those miovies, along with the changing stat us of support. contact.
and( attachment relations between those objects. In this chapter I have argued that counterfact ual silllU-
lation is performed by a modular imagination capacity which directly encodes naive physical knowledge
such a,, the substmtitaity continuity, gravity. and ground plane constraints. I have argued that b v
being based on these principles, the human imagination capacity. operatts in a verv different fashion
fronm conventional kinematic simulators. The incremental stepwise behavior of traditional kineiuatic
simulators is both slow and cognitively implausible since it does not faithfully reflect the substantiality
and contrinUity constraints. This chapter has presented an alternate simulation nmechanisni. which for
a limited class of mechanisms, can directly predict in a single step that objects fall along continuous
paths until they collide with obstacles in their path of motion. This mechanisni appears better suited
to the task of recovering support, contact, and( attachment relations since tile recovery of these relations
appears to be based more on collision detection than on physical accuracy. Perhaps that is why hu-
man visual perception is more sensitive to the notions of substantiality and continuity than to velocity.
momentum, and acceleration. While these mechanisms have to date been implemented only for tile
drastically simplified ontology of ABIGAIL's micro-world, it appears that similar, though probably iulich
more complex variants of these mechanisms form the basis of the imagination capacity which drives
human visual perception. Extending the mechanisms explored with ABIGAIL to deal with more coml)lex
world ontologies remains for future work.



Chapter 10

Conclusion

10.1 Related Work

Computer models of event perception are not new. A number of previous attempts at producing event
descriptions from animated movies have been described in the literature. Thibadeau (1986) describes
a system that processes the movie created by Heider and Sinunel (1944) and determines when events
occur. The Heider and Simmel movie depicts two-dimensional geometric objects moving in a plane.
When viewing that movie, most people project an elaborate story onto the motion of abstract objects.
Thibadeau's system does not classify event types. It just produces a single binary function over time
delineating when an *event' is said to have occurred. Badler (1975) describes an unimplemented strat-
egy for processing computer-generated animated line drawings to recover event, descriptions. Badler's
proposed system hierarchically recognizes predicates which are true over successively longer segments
of the movie. His proposed system does not incorporate counterfactual simulation. The lowest level
predicates are computed geometrically on figures in a single frame of the movie. He thus does not have
accurate methods for deriving support, contact, and attachment relations between objects. Adler (1977),
Tsotsos (1977), Tsotsos and Mylopoulos (1979), Tsuji et al. (1977), Tsuji et al. (1979), Okada (1979),
and Abe et al. (1981) describe systems similar to Badler's. Again these systems do not incorporate
counterfactual simulation and do not derive support, contact, and attachment relations between objects.
Novak and Bulko (1990) describe a system for interpreting drawings depicting physics problems. Their
system uses tl,. linguistic description of the problem as an aid to the process of understanding the im-
age. It cannot correctly interpret the image without the help of the linguistic description and thus unlike
ABIGAIL, cannot be used as a model of the event perception mechanism that provides the non-linguistic
input to the language acquisition device.

Kinematic simulation is also widely discussed in the literature, though it has never been applied to
the task of event perception. While most of the work falls within the classic approach of numerical
integration, two notable exceptions are the work of Kramer and Funt.

10.1.1 Kramer

Kramer (1990a, 1990b) discusses a kinematic simulator called TLA. Like this thesis, Kramer eschews
the classic approach based on numerical integration in favor of a more closed-form solution. He does so,
however, for reasons of efficiency. Kramer is not concerned with cognitive modeling and plausibility. Like
ABIGAIL, TLA ignores dynamics. This includes velocity, momentum, kinetic energy, and the magnitude
of forces acting on components.

On one hand, TLA is substantially more powerful than ABIGAIL. Besides simulating three-dimensional

199
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miov~emienit (constrainled by a wide varietyV ofl oiiit types. -iLA, is able t o iatidle' closed-ltool) k Iiieiiat ic (-IiaIni.,
Kramier presents TLA simnulat ing a number of coitiplex iiiecliaiisnils iincluuding a solal'tetd. It does 5t b-%
const ructing what Kramine calls anl assemnhit' plan., a procedure for iiicreiiiet'ially sat istfitg th liJointi
const raint s of a ineclianisni. one( by one, iii a fashion whIich is analogous to assemblIinig tilit, ii icc aniiisii In

at given configuration. Wheni a miechaniismi conteiiis a closed-loop kiiueiiat ic (-hall,. ietart, const raintý
bet ween the values of its jo' ilt paramiet ers. Some independent set of joint paraimet ers i.s t akeni as, tilt,
drivi'ng inputs so that the values of the remaining dependent joint paraimet ers is unRiquly (let ermtined
given particular values for those inputs. Ani assemtbly plan is thlus at procedtire for coumput ing tll l;it'vlues
of dependent. joint parameters fromi thlese driving iiiltuts.1 [LA operates by repeatedly assemublinig a
niechanisin for different valuies of the driving inp~uts. When at tilecliaiiisinl does not conitaini ;it\,' c losed-
loop kinemnatic chains, its assembly plan is trivial. All of its flexible joint parameters art driving Input,

anid none are computed as dependeiit results. lIt essence ABIGAIL handles *just this simiple cast'. Tlit
novel cont~rib~ution of TLA is all algorit hm for dlerivilng assemibly plans for inechanismns withI c lost'd- l op
kinematic chiainis.

Onl the other hand. ABIGAIL addresses isstues that (t0 not conicern Kramier. Even ignioring dynamics.
the mot ion of objects, must obey a number of constraints in add Ition to t hose Imposed by joints. These
include substantiality, cont intuity. gravity, aiid ground plane'. nonie of wvhiichi are handled by r.....in
essence, TLA is anl extremely sophisticated andl conmpetent anialog of the inner loop of ABIGAII's simulator

which moves the foreground relative to the background. lin ABIGAIL. t his Inner loop is trivial since she
does not deal with closed-loop kinematic chains. The foctis lit ABIG;AIL however, is onl what is built onl top
of this inner loop-the mechanism for rep~eatedlly choosing a foregrounid, decidling whether to translate
of rotate this foreground. determining an appropriat~e tranislationi axis 0 or pivot point 1). and most
importantly analytically d( crintning hoir far to translath or rotah( IlG foro quoiud along that transl4ation
aris or piool point tnitil potrithal fn( r~qy 110ould Mn r(as( or substantIiality would b( riolattd. T'his is ont
novel conttribution of the kinematic simulator incorrporated Into ABIGAIL.. apart fronm all of the higher-
level mechanisms which use that simulator t~o supp~ort event perceptioni aiid thle groutiding of language
in perception.

One may consider merging the two ideas together lin aii attempt to allow ABIGAIL. to understand
images tha~t contain closed-loop kinematic chains. This is act ually in ubh more complicated thlaii it
would seem at first glance. lIn ABIGAIL"s ontology, all motion follows either linear or circular pathls.
Furthermore, all objects are constructedI from line segments and circles. Thus all motion limits canl be
found by computing the intersection of lines and circles. This is conceptually straightforward despite'
the myriad of cases, subcases, and boundary cases which must be considered( to make it work. As lt'e
driving inputs of a mechanism wit~h closed-loop kinematic chains; are varied, however, their coutponients
follow paths which are substantially more complex as they move. Mergitg Tt.A andl ABIGAIL would first

require that. TLA compute a representation of the path a point onl an object would follow as a result
of varying a driving input. Currently, TLA does not compute such representations. It only coniputes
individual positions along t~he path given particular values for the drivitig inputs. Even if anl explicit
representation of paths were produced. two further capabilities are nteedled to incorporate such a capacity
into the simulation framework discussed in sect ion 9.1. First, a method0( is ineedled to coniptite how far
one can vary a driviing input while -t ill dlecreasing potential energy. Second. a met hod is neetded for
mntersect-iiig arbit~rary paths. My guess Is that. this would be a substantial endeavor.

It. is not, clear that such anl effort. would be worthwhile. People might tiot have the ability to accurately
simulate complex mechanisms as part. of the hypothesized imagination capacity. While t hey clearly
can predict, at, least at a gross level, the behavior of mechanisms such as the ones in figures 9.23.
9.24. aiid 9.25. they might (10 so by somte aplproximiationi method which removes thle closed-loop kinemeat ic

'A given set of joint parameters may be sutficient. fotr unifqueI determining a mechaniism's tconfiguratittn for sttme valu~es

(tf the parameters but not others. Thtus an assembly plan must be flexible about which joint parameters it takes as, driving
inputs and which parameters it returns &% tomnputed results.
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chains. How this may be done is a topic for fuiture research.

10.1.2 Funt

Funt (1980) describes a system called W¥HISPER that shares imailv of the saiie goals as ABIGAIl.',

inmagination capacity. Like ABIGAIL., W\HISPER call deterline the support relationships bet weeii olj,'cts,
in a static image. W1HISPER call also predict tile sequence of events that will occur during the collapse
of a pile of objects depicted in a static iiage. WHISPER differs from AFBIG;AIL iii one key detail how,,ver.
While ABIGAIL represents images as collections of line segmnents and circles. WHISPER instead represents

iniages as bitnmaps. Thus, unlike ABIGAIL, WHISPER call represent and operate on images containing
arbitrarily shaped objects.

WHISPER maintains two distinct bitmap representations of each image. One uses a conventional
rectilinear layout of pixels. Funt calls this representation the diagram. The other uses a concentric
layout of pixels which Funt calls the retina. Various transformation operations call be performed on
an image in each representation. For example. objects in the diagram may be translated or rotated.
a process which Funt calls redrawing the diagranm. The concentric layout of the retina representation
supports a number of efficient transformations, in particular rotation about the center oft he retiia. Funt

allows the diagram representation to be converted to the retina representation but not vice versa. This
process, called fixation, call specify a point in the diagram to be aligned with the center of t lie retina.
Higher-level processes request sequences of fixation and transformation operations. These processes
call also perform a number of query operations on the retina representation. Direct queries on the
diagram are not supported. lii addition to rotation about its center, the concentric layout of Ihe retina
representation supports several other efficient query operations. These include conmputing the center-
of-area of an object, finding the points of coitact between two objects, examining curves to find points
of abrupt change in slope, determining whether an object is symmetric, and determining whether two
objects have the same shape.

The higher-level supervisory processes determine support relationships and perform the siniulation by
issuing a sequence of transformations. hxations. and queries on tile diagram and retina representations.
hi this respect, WHISPER is very similar to ABIGAIL. Both ABIGAIL and WHISPER ignore dynamic effects
of velocity, acceleration, momentum, moment of inertia, and kinetic energy during the simulation. Both
assume that objects have a uniform density which allows equating center-of-niass with center-of-area.
More importantly, both perform simulation by a sequence of single object translations and rotations.
ignoring the possibility for simultaneous movement of multiple objects. Besides the inherent physical
inaccuracy caused by this approach to simulation, WHISPER. like ABIGAIL, is unable to simulate scenarios
with closed-loop kinematic chains.

Though WHISPER is similar in intent, to ABIGAIL. and shares many of the same underlying assunmp-
tions and problems, WHISPER also differs from ABIGAIL in a number -)f key respects. First, as discussed
previously, WHISPER uses a bitmap representation while ABIGAIL uses ail edge-based representation.
Second, WHISPER only performs simulations and determines support relationships. It does not perform
the higher-level tasks of event perception which in ABIGAIL are built around the ability to perforni
such simulations by the methods described in chapter 8. Third. WVHISPER's ontology is strictly two-
dimensional. It, lacks any notion of a third dimension, even a restricted one such as the concept of
'layer' incorporated into ABIGAIL. Furthermore. WHISPER's ontology does not include the capability
for objects to be fastened together by joints. Since its ontology lacks joints and layers, it has no need to
infer such information from the image and thus has no analog to the model updating process described
in section 8.2.1. A fourth and more significant difference between ABIGAIL and WHISPER is that while
ABIGAIL can determine analytically in a single step, the maximal rotation or translation an object call
undergo subject, to substantiality constraints. WHISPER operates more like a conventional simulator,
repeatedly performing small transformations and checking for collisions after each transformation.
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It is ilntoer-o•tln to nlote that \\'IIlPVR illtctrl)mrat'.'• at nlumlber of ||' I ;ll.- • ht-lrVtic.s. ai., .\BIt;All1

thaIi hIIkit Ilit' choice of pivot points antd trai•slat i tn axes,.. Fur lterinior'. \\it I ý lt it ilit's- a Inq)tViln k.f
co)iglouterat Lon aiiialgatteat ing several objiects togow.th.r forcollthctli\ aialysis of iit ppm-.ilt rtclat i.ll a

concept which is analogous to t hat of clusters. inlike ABIGAIl. tllI!LI d,'rle'rinine.' whit her ali o(Ijtc'tt
is supported without actually iniaginhlg it f'alling,, by examtining flie rc.laliv•. positioi., of an ,lit ' cl's
center-ol-inass and its support points. Tlhis iiethod allows VlISIPItR to hleterniti•t support r,,latiti-,hIs)l
for soine, but not all. situnations where ABIGAIlt, would fail dule to imiplield chlosd-looI, kineinatic chatli

10.2 Discussion

For pedagogical purposes, part II of this thtesis ha.,, taken an ext rent, position on thle r,'lrpresentatit f

of verb meaninggs. ('hapter 7 has exaggerated tlie role played Ib\ the not ions of su pport. colntact. antd
attachment in order to motivate the event perceptio nichaiistis presented iii chapt er s and 9. It
doing so. it downplayed the notions of causality and force applllication which most prior approach(,',,
to lexical sewiantic representation (e.g, Miller 1972. Schi]mAk 1973. Jackendoff I 983. and Pinker 19S9)
have taken to be central to verb definitions. This thesis does not claim that tle notiol., of* suptport.
contact, and attachment are sufficient to define verb mleanings. ('ausalitv and lorc,, application. as
well as numerous other notions, are needed to characte,,ze word meanings in general. let alone th,,

meanings of simple spatial nmotion verbs. Most of the words defined in chapter 7 (v'.g thron. fall. drop1 .
bouncu. jutup. put. pick up. carry. rais. inak . br ak. fix.. st(p. and 'alk) have clear causal colmipolet'iits
even though the definitions given there were able to circumvent the need for describing this causal
component by sufficiently characterizing the non-causal aspects of the ineanings of these verbs. nainwlN
the support. contact, and at.tachmuent relations tihey engender between object., participating ini event.,
that they describe. This ability for ignoring tile causal comnponent of verb mneanings broke down for
verbs like roll and slId( in their transitive uses. Thus ulthnately it will be necessary to incorporate'
causality into a comprehensive lexical semantic representation. Doing so will require all explanation of
how to ground the notion of causality il percept ion.

It may be possible to extend the techniques described in chapters 8 and 9. inaliely counterfactual
simulation, to support the perception of causality and force application. lit essence. all object .A can
be said to cause all event t if ( does actually happen iii the observed world but does not happent in al
imagined world where A either does not exist or moves differenitly than in the observed world. Imagining
an alternate world without A can be accomplished usling existing mnechanisins in ABIGA\IIL. Th'i not1ion
of 'moving differently', however, requires extending ABIGAIL s ontology to support animate objects.
Animate (or at least motile) objects are those which appear to tiove oil their own initiative. Such
motion occurs because parts of anliate objects exert forces relative to other parts. Within the limiited
ontology of ABIGAIL's micro-world, such relative motion of animate ob ject parts could be modeled
completely using joints which exert forces to change their parameters. ('urrent ly. gravity is the only
force incorporated into ABIGAIL. ABIGAIL could be extended to model joint forces lit addition to
gravity. This would require several changes. First, the joint niodel maintained by ABIGAIL mnust be
extended to contain a representation of the clianging forces exerted by ea-h joint as a fiunction of
time. The changing force profile of the joints comlprisiug anl object .A call be said to be the motor
program executed by .4. To model grasping antd releasing. the motor program must have the capacity
for representing the creation and dissolution of joints in addition to changing force profiles. Second.
the imagination capacity must be extended to take a motor program as input iii addition to a set of
figures, a joint model, and a layer model. such an extended imagination capacity would imodel tie
short-term future of the world under tlie effects of gravity assuming that each antimate object executed
the motor program given as input. Modeling t lie execut jon of motor programs would require a kini'nal ic
simulator that was more faithful to the time course of siniulation than the simulator curi,,ntlv used by
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oibservable'. AftwmI. Iliust he provkltt w~ithi miechlansilsm for hlyjotll'icsill'2 tlit'.-t Illota) jtroLjaiiI-. Sit ic
Ilt'chllaislils. wVould~ he aiialogoiis to those (llrrt'ntl usedt bw AHIG.\tt. for tilptatlug liti Joint andltLier

inicorporate Ito li tilt, livlottlIt',sizcdt Illotor prtogralils oiily thest' forcet appilicat tions whc wr lict'll Atl' 1l'.tl

hiave' flit' imaginetd wotrldl iinitt' thlie tdtstr~c worl x'id. I- ina~ll\. a failnit ivt (cause iu ) tolhr Iddal-ti
to tflit, lexical semlantit' representat~itoll described't Inl chlapter 71 Aeliiall ' . tilertit set'tli ito Iw :1t lcast t Ilir't

dist inct not1ions of' caiisalit\ T.hie first e'xpre'ss,,., I lt fact t hat thet t'xisitlc 4 i't' If ii tolft''t .x 'atlsed an
event o.Such a caus~al re'lat ion is t rile if toccuirs Ii flit, oltservetl wo rldi 1)[it tdnt' not tt'tiir Ili a %\on Il
liliagined without xi. Givein t his lnotion of' t';uisalit y. thit two argumein'it priliit ivt (supports x !/'anl

bet reformutlatetd as (cause x (supported y)). lT'e s'condt expresstes thle fact t hat thle mi otioll (,la

atimliate obj, ect x,. namnely flit- moion~ lolltaisetl by the( 'execut ion o~f it, mlotor programi. caulstd ati t''t't'llt

Such a caulsal relation is trnet if (ocellrs ill tilie Observed 'o, 1(d lilt dot's not occtir iii a wotrld iniagilit d
where j-' does not eXecuite its ioloor jtrogralli. D~uring stich cotinterfactutal sliidltia oll. x1 wouldt kt''i rigidl
all of the joints which it would have moivetd atctording to the motor programi ret'overe't from I lit t bst'r~t't
worldl. 'lthe t hird variant of catisalit.v expresses tflit' fact that t lie inivolunt ary moittioin of an ohjt ci x t'anist't
anl ent,%~i Su~ch iiivoltint arv tuotion totccurs not lttcau-' of a lmot or prog~rati etx'ecut ed b\y billItn rathletr
as a result of ejt her gr-.vitv. a motor programi execuite'd by soint' ot her object't or a t'omibinat ionl tf'tlit'

t WO.

Putting liese spt'ciilat ive ideas asitde. there art' several Implortanit areas of conitiiiutet work along
lt'e iialin thlenies adlvancedl in p~art 11 of' this thesis. First, to date ABIGAIL, has only ptrocessedt a por-

tion of a single movie. Adtdit ional work is ntetded to imnprovte thlit robust ness aiid] Iperformi antet of' tlit'
imiaginat ion capac ityv and event Perceptio mui echanisnms to allow ABtIGAxIL to successfully ptrottss mianyv
niovies. Second. ABIGcA IL currently does not prod ucte comiplete t'eniant ic descriptilonls of evenit silt' I as
those, presented Iin chapter T. W\hile she (d0es recovter percept ual p~rimititves. Incluidin- tflit' lnotioiis of'

su~pport . contact . antI at tachiment. shet dot's not dggregate, these prilliltivt's in to evenlt exprtessitons. It
would be fairly straightforward to incorporate a le'xicon of event exprtession, 'Into ABHIGA IL alid llavt' litr

cotiit~inally assess which of these knowni event tvypes werte currently happening in tflit' movie. A niumbt'r

of prior ap)proachles to event percept ion (e.g. BatIler I 975~) uitilized sutIic a lexicon of event t ypes.A timore

satisfying approach would not rt'ly onl a predefinted set of event types but inst eatd won 1(1 be able' to le'arni
thie appropriate evenit lexiconi. The t' vent lexicoii miightt be acquiiredI by not icing recurring setplleticts of'
perceptunal primitives in the movie. Alternat ively, there may be universal and pe'rhaps innlate principles
that govern thle aggregat ion of percept ual prilnilt ives linto tliscret eetvents. Discerning tlitt' natutre of'suich
p~rinciples and testing their validity bY buildiing computational lnodlels awaits fuirt her research. Finially.
ABICAIL is, currently not integrated with any language processing facility. The origiiial goal that mo0-
tivatedlfthe work onl event percepttion dlescribed l ii p)art 11 of t his thesis was fthe desire to grouind flthe

language acquisition task advanced in) part I in a realistic lexical semantic representat ion which could
be shown to be recoverable front visuial input. Ini order to attempt the integration of t lie twvo hialves of
this thlesis it is first necessary t~o successfully accomplish the first. two tasks out lined above . Adtdit ionally.
one mutst. formiulatet a suitable linking ruile for thle semantic representat ion produced by tflit' aggregat ion

process tdescribed above. This linking rut' must then be iniverted lin a fashion simiilar to t it', way tlht'
.1ackendovian liking rule was inivertedl mu sectitoll :1.1. This inivert ed linking rult' could t lien he comibined
withI a hyvbrid language acquisition model based onl the synt act ic thet-ory of K;uIxbut utlilizinig a
miore elaborate( semantic representation with a fracturing rule along the lines of NIAINtRA and f.Ax'RA.

The substantial effort of building such a -oniprelieiisive coimputat~ioiial mnodel of laniguage acqutisit ion
remains for future work. Nonetheless, this thesis has taken a modest first in this tdirect ion by elabtorat ing
a franiework for approachiiig t lii task and (demlonst rating tdet ailed wvorkinig implement ations of a numtiber
of c-rucial components t hat wxill uilt imat ely lbe nieedled to constriict stichi languagte acquisition models.



204 (HAPTER 10. (ON('LISION



Appendix A

Maimra in Operation

This appendix contains a trace of I|AIMRA processing the corpus from figure 1.2 using the grammar
from figure 4.1. The final lexicon produced for this run is illustrated in figure 4.3. This trace depicts
MAIMRA processing the corpus, utterance by utterance, producing first a disjunctive parse tree for each
utterance and then a disjunctive lexicon formula for that utterance.

Ics: (OR (BE PERSONI (AT PERSON3))
(GO PERSONI (PATH (FROM PERSON3) (TO PERSON2)))
(GO PERSONI (FROM PERSON3))
(GO PERSONI (TO PERSON2))
(GO PERSON1 (PATH))
(BE PERSON1 (AT PERSON2)))

sentence: (JOHN ROLLED)
parse: (S (NP (N JOHN)) (VP (V ROLLED)))

fracture:
(OR (AND (DEFINITION JOHN N PERSON3)

(DEFINITION ROLLED V (BE PERSONI (AT ?0))))
(AND (DEFINITION JOHN N (AT PERSON3))

(DEFINITION ROLLED V (BE PERSONI ?0)))
(AND (DEFINITION JOHN N PERSONI)

(DEFINITION ROLLED V (BE ?0 (AT PERSON3))))
(AND (DEFINITION JOHN N PERSON2)

(DEFINITION ROLLED V (GO PERSONI (PATH (FROM PERSON3) (TO ?0)))))
(AND (DEFINITION JOHN N (TO PERSON2))

(DEFINITION ROLLED V (GO PERSONI (PATH ?0 (FROM PERSON3)))))
(AND (DEFINITION JOHN N PERSON3)

(DEFINITION ROLLED V (GO PERSONI (PATH (FROM ?0) (TO PERSON2)))))
(AND (DEFINITION JOHN N (FROM PERSON3))

(DEFINITION ROLLED V (GO PERSONI (PATH ?0 (TO PERSON2)))))
(AND (DEFINITION JOHN N (PATH (FROM PERSON3) (TO PERSON2)))

(DEFINITION ROLLED V (GO PERSONI ?0)))
(AND (DEFINITION JOHN N PERSONI)

(DEFINITION ROLLED V (GO ?0 (PATH (FROM PERSON3) (TO PERSON2)))))
(AND (DEFINITION JOHN N PERSON3)

(DEFINITION ROLLED V (GO PERSONI (FROM ?0))))

(AND (DEFINITION JOHN N (FROM PERSON3))

205
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(DEFINITION ROLLED V (GO PERSONI ?O)))

(AND (DEFINITION JOHN N PERSONI)
(DEFINITION ROLLED V (GO ?0 (FROM PERSON3))))

(AND (DEFINITION JOHN N PERSON2)
(DEFINITION ROLLED V (GO PERSON1 (TO ?0))))

(AND (DEFINITION JOHN N (TO PERSON2))
(DEFINITION ROLLED V (GO PERSONI ?O)))

(AND (DEFINITION JOHN N PERSONI)
(DEFINITION ROLLED V (GO ?0 (TO PERSON2))))

(AND (DEFINITION JOHN N (PATH))
(DEFINITION ROLLED V (GO PERSON1 ?0)))

(AND (DEFINITION JOHN N PERSONI)
(DEFINITION ROLLED V (GO ?0 (PATH))))

(AND (DEFINITION JOHN N PERSON2)
(DEFINITION ROLLED V (BE PERSONI (AT ?0))))

(AND (DEFINITION JOHN N (AT PERSON2))
(DEFINITION ROLLED V (BE PERSONI ?0)))

(AND (DEFINITION JOHN N PERSONI)
(DEFINITION ROLLED V (BE ?0 (AT PERSON2)))))
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ics: (OR (BE PERSON2 (AT PERSON3))
(GO PERSON2 (PATH (FROM PERSON3) (TO PERSONW)))
(GO PERSON2 (FROM PERSON3))
(GO PERSON2 (TO PERSON1))
(GO PERSON2 (PATH))

(BE PERSON2 (AT PERSONi)))
sentence: (MARY ROLLED)
parse: (S (NP (N MARY)) (VP (V ROLLED)))
fracture: (OR (AND (DEFINITION MARY N PERSON2)

(DEFINITION ROLLED V (BE ?0 (AT PERSON3))))
(AND (DEFINITION MARY N PERSON2)

(DEFINITION ROLLED V (GO ?0 (FROM PERSON3))))
(AND (DEFINITION MARY N PERSON2)

(DEFINITION ROLLED V (GO ?0 (PATH)))))
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lcs: (OR (BE PERSON3 (AT PERSONi))
(GC PERSON3 (PATH (FROM PERSONO) (TO PERSON2)))

(GO PERSON3 (FROM PERSON1))
(GO PERSON3 (TO PERSON2))
(GO PERSON3 (PATH))
(BE PERSON3 (AT PERSON2)))

sentence: (BILL ROLLED)
parse: (S (NP (N BILL)) (VP (V ROLLED)))
fracture: (AND (DEFINITION BILL N PERSON3)

(DEFINITION ROLLED V (GO 70 (PATH))))
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ics: (OR (BE OBJECTI (AT PERSON1))
(GO OBJECTI (PATH (FROM PERSONI) (TO PERSON2)))
(GO OBJECT1 (FROM PERSONI))
(GO OBJECTI (TO PERSON2))
(GO OBJECT1 (PATH))
(BE OBJECT1 (AT PERSON2)))

sentence: (THE CUP ROLLED)
parse: (OR (S (OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP)))

(NP (N THE) (VP (V CUP)))
(NP (N THE) (PP (P CUP))))

(VP (V ROLLED)))

(S (NP (N THE))
(OR (VP (OR (AUX (DO CUP))

(AUX (BE CUP))
(AUX (MODAL CUP))
(AUX (TO CUP))
(AUX (HAVE CUP)))

(V ROLLED))
(VP (V CUP) (VP (V ROLLED))))))

fracture: (OR (AND (DEFINITION THE N OBJECTO)

(OR (DEFINITION CUP HAVE SEMANTICLESS)
(DEFINITION CUP TO SEMANTICLESS)
(DEFINITION CUP MODAL SEMANTICLESS)
(DEFINITION CUP BE SEMANTICLESS)
(DEFINITION CUP DO SEMANTICLESS))

(DEFINITION ROLLED V (GO ?0 (PATH))))
(AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECTI)
(DEFINITION ROLLED V (GO ?0 (PATH)))))
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lcs: (OR (BE PERSON3 (AT PERSON1))
(GO PERSON3 (PATH (FROM PERSONI) (TO PERSON2)))
(GO PERSON3 (FROM PERSONW))
(GO PERSON3 (TO PERSON2))
(GO PERSON3 (PATH))
(BE PERSON3 (AT PERSON2)))

sentence: (BILL RAN TO MARY)

parse: (OR (S (OR (NP (N BILL) (NP (N RANM)))
(NP (N BILL) (VP (V RAN)))
(NP (N BILL) (PP (P RANM))))

(VP (V TO) (NP (N MARY))))
(S (NP (N BILL))

(OR (VP (V RAN) (PP (P TO)) (NP (N NARY)))
(VP (V RAN) (VP (V TO)) (NP (N MARY)))

(VP (V RAN) (NP (N TO)) (NP (N MARY)))
(VP (OR (AUX (DO RAN))

(AUX (BE RAN))
(AUX (MODAL RAN))
(AUX (TO RAN))
(AUX (HAVE RAN)))

(V TO)
(NP (N MARY)))

(VP (V RAN)
(OR (NP (DET TO) (N MARY))

(NP (N TO) (NP (N MARY)))))

(VP (V RAN) (VP (V TO) (NP (N MARY))))
(VP (V RAN) (PP (P TO) (NP (N MARY)))))))
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fracture:
(OR (AND (DEFINITION BILL N PERSON3)

(OR (AND (DEFINITION MARY N PERSON2)

(DEFINITION TO P (TO ?0))
(DEFINITION RAN V (GO ?0 (PkTH ?l (FROM PERSON1)))))

(AND (DEFINITION MARY N PERSON2)

(DEFINITION TO P (PATH (FROM PERSONI) (TO ?0)))

(DEFINITION RAN V (GO ?0 ?1)))
(AND (DEFINITION MARY N PERSON2)

(DEFINITION TO V (TO ?0))
(DEFINITION RAN V (GO ?0 (PATH ?1 (FROM PERSONI)))))

(AND (DEFINITION MARY N PERSON2)

(DEFINITION TO V (PATH (FROM PERSONI) (TO ?0)))
(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION TO DET SEMANTICLESS)

(DEFINITION MARY N PERSON2)
(DEFINITION RAN V (GO ?0 (PATH (FROM PERSON1) (TO ?1)))))

(AND (DEFINITION MARY N PERSON2)

(DEFINITION TO N (TO ?0))
(DEFINITION RAN V (GO ?0 (PATH ?I (FROM PERSON1)))))

(AND (DEFINITION MARY N PERSON2)
(DEFINITION TO N (PATH (FROM PERSONI) (TO ?0)))
(DEFINITION RAN V (GO ?0 ?1)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)
(DEFINITION RAN TO SEMANTICLESS)

(DEFINITION RAN MODAL SEMANTICLESS)
(DEFINITION RAN BE SEMANTICLESS)
(DEFINITION RAN DO SENANTICLESS))

(DEFINITION MARY N PERSON2)

(DEFINITION TO V (GO ?0 (PATH (FROM PERSONi) (TO ?1)))))
(AND (DEFINITION TO N PERSONI)

(DEFINITION MARY N PERSON2)
(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))

(AND (DEFINITION TO N (FROM PERSONI))

(DEFINITION MARY N PERSON2)

(DEFINITION RAN V (GO ?0 (PATH ?l (TO ?2)))))
(AND (DEFINITION TO V PERSONI)

(DEFINITION MARY N PERSON2)
(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))

(AND (DEFINITION TO V (FROM PERSONI))

(DEFINITION MARY N PERSON2)

(DEFINITION RAN V (GO ?0 (PATH ?I (TO ?2)))))
(AND (DEFINITION TO P PERSON1)

(DEFINITION MARY N PERSON2)

(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))
(AND (DEFINITION TO P (FROM PERSONI))

(DEFINITION MARY N PERSON2)

(DEFINITION RAN V (GO ?0 (PATH ?1 (TO ?2)))))))
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(AND (DEFINITION BILL N PERSON3)
(OR (AND (DEFINITION MARY N PERSON2)

(DEFINITION TO P (TO ?0))
(DEFINITION RAN V (GO ?0 71)))

(AND (DEFINITION MARY N PERSON2)
(DEFINITION TO V (TO ?0))
(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION TO DET SEMANTICLESS)
(DEFINITION MARY N PERSON2)
(DEFINITION RAN V (GO ?0 (TO 71))))

(AND (DEFINITION MARY N PERSON2)
(DEFINITION TO N (TO ?0))
(DEFINITION RAN V (GO ?0 71)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)
(DEFINITION RAN TO SEMANTICLESS)
(DEFINITION RAN MODAL SEMANTICLESS)
(DEFINITION RAN BE SEMANTICLESS)
(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION MARY N PERSON2)
(DEFINITION TO V (GO ?0 (TO ?1))))))

(AND (DEFINITION BILL N PERSON3)
(OR (AND (DEFINITION MARY N PERSON2)

(DEFINITION TO P (AT ?0))
(DEFINITION RAN V (BE ?0 71)))

(AND (DEFINITION MARY N PERSON2)
(DEFINITION TO V (AT ?0))
(DEFINITION RAN V (BE ?0 71)))

(AND (DEFINITION TO DET SEMANTICLESS)
(DEFINITION MARY N PERSON2)
(DEFINITION RAN V (BE ?0 (AT ?1))))

(AND (DEFINITION MARY N PERSON2)
(DEFINITION TO N (AT ?0))
(DEFINITION RAN V (BE ?0 ?1)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)
(DEFINITION RAN TO SEMANTICLESS)
(DEFINITION RAN MODAL SEMANTICLESS)
(DEFINITION RAN BE SEMANTICLESS)
(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION MARY N PERSON2)
(DEFINITION TO V (BE ?0 (AT 71)))))))
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ics: (OR (BE PERSON3 (AT PERSONi))
(GO PERSO03 (PATH (FROM PERSONI) (TO PERSON2)))

(GO PERSON3 (FROM PERSONi))
(GO PERSON3 (TO PERSON2))
(GO PERSON3 (PATH))
(BE PERSON3 (AT PERSON2)))

sentence: (BILL RAN FROM JOHN)
parse: (OR (S (NP (N BILL) (VP (V RAN))) (VP (V FROM) (NP (N JOHN))))

(S (NP (N BILL))
(OR (VP (V RAN) (PP (P FROM)) (NP (N JOHN)))

(VP (V RAN) (VP (V FROM)) (NP (N JOHN)))
(VP (V RAN) (NP (N FROM)) (NP (N JOHN)))
(VP (OR (AUX (DO RAN))

(AUX (BE RAN))
(AUX (MODAL RAN))
(AUX (TO RAN))
(AUX (HAVE RAN)))

(V FROM)
(NP (N JOHN)))

(VP (V RAN)
(OR (NP (DET FROM) (N JOHN))

(NP (N FROM) (NP (N JOHN)))))
(VP (V RAN) (VP (V FROM) (NP (N JOHN))))

(VP (V RAN) (PP (P FROM) (NP (N JOHN)))))))
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fracture:
(OR (AND (DEFINITION BILL N PERSON3)

(OR (AND (DEFINITION JOHN N PERSONI)
(DEFINITION FROM P (AT ?0))
(DEFINITION RAN V (BE ?0 "1)))

(AND (DEFINITION JOHN N PERSONI)
(DEFINITION FROM V (AT ?0))
(DEFINITION RAN V (BE ?0 ?1)))

(AND (DEFINITION FROM DET SEMANTICLESS)
(DEFINITION JOHN N PERSONI)
(DEFINITION RAN V (BE 70 (AT ?1))))

(AND (DEFINITION JOHN N PERSONi)
(DEFINITION FROM N (AT ?0))
(DEFINITION RAN V (BE ?0 ?1)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)

(DEFINITION RAN TO SEMANTICLESS)
(DEFINITION RAN MODAL SEMANTICLESS)
(DEFINITION RAN BE SEMANTICLESS)

(DEFINITION RAN DO SEMANTICLESS))
(DEFINITION JOHN N PERSONI)
(DEFINITION FROM V (BE ?0 (AT ?1))))))

(AND (DEFINITION BILL N PERSON3)
(OR (AND (DEFINITION JOHN N PERSONi)

(DEFINITION FROM P (PATH (FROM ?0) (TO PERSON2)))
(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION JOHN N PERSONI)
(DEFINITION FROM V (PATH (FROM ?0) (TO PERSON2)))
(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION JOHN N PERSON1)
(DEFINITION FROM N (PATH (FROM ?0) (TO PERSON2)))
(DEFINITION RAN V (GO ?0 ?1)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)
(DEFINITION RAN TO SEMANTICLESS)
(DEFINITION RAN MODAL SEMANTICLESS)
(DEFINITION RAN BE SEMANTICLESS)
(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION JOHN N PERSONI)
(DEFINITION FROM V (GO ?0 (PATH (FROM ?1) (TO PERSON2)))))

(AND (DEFINITION FROM N PERSON2)
(DEFINITION JOHN N PERSONI)
(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))

(AND (DEFINITION FROM V PERSON2)
(DEFINITION JOHN N PERSONI)
(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))

(AND (DEFINITION FROM P PERSON2)
(DEFINITION JOHN N PERSONI)
(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))))



215

(AND (DEFINITION BILL N PERSON3)
(OR (AND (DEFINITION JOHN N PERSONI)

(DEFINITION FROM P (FROM ?0))
(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION JOHN N PERSON1)
(DEFINITION FROM V (FROM ?0))
(DEFINITION RAN V (GO ?0 71)))

(AND (DEFINITION JOHN N PERSONI)
(DEFINITION FROM N (FROM 70))
(DEFINITION RAN V (GO ?0 71)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)
(DEFINITION RAN TO SEMANTICLESS)
(DEFINITION RAN MODAL SEMANTICLESS)
(DEFINITION RAN BE SEMANTICLESS)
(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION JOHN N PERSON1)
(DEFINITION FROM V (GO ?0 (FROM 71)))))))
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ics: (OR (BE PERSON3 (AT PERSONW))

(GO PERSON3 (PATH (FROM PERSONI) (TO OBJECT1)))

(GO PERSON3 (FROM PERSONI))

(GO PERSON3 (TO OBJECTI))

(GO PERSON3 (PATH))
(BE PERSON3 (AT OBJECTI)))

sentence: (BILL RAN TO THE CUP)



217

parse: (OR (S (NP (N BILL) (VP (V RAN)))
(OR (VP (V TO) (NP (N THE)) (NP (N CUP)))

(VP (V TO)

(OR (NP (DET THE; (N CUP))

(NP (N THE) (NP (N CUP)))))))
(S (NP (N BILL))

(OR (VP (V RAN) (PP (P TO) (NP (N THE))) (NP (N CUP)))
(VP (V RAN) (VP (V TO) (NP (N THE))) (NP (N CUP)))
(VP (V RAN)

(OR (NP (DET TO) (N THE))
(NP (N TO) (NP (N THE))))

(NP (N CUP)))
(VP (OR (AUX (DO RAN))

(AUX (BE RAN))
(AUX (MODAL RAN))
(AUX (TO RAN))
(AUX (HAVE RAN)))

(V TO)
(NP (N THE))

(NP (N CUP)))
(VP (V RAN) (NP (N TO)) (NP (N THE)) (NP (N CUP)))
(VP (V RAN) (VP (V TO)) (NP (N THE)) (NP (N CUP)))

(VP (V RAN) (PP (P TO)) (NP (N THE)) (NP (N CUP)))
(VP (V RAN) (PP (P TO))

(OR (NP (DET THE) (N CUP))
(NP (N THE) (NP (N CUP)))))

(VP (V RAN) (VP (V TO))
(OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP)))))
(VP (V RAN) (NP (N TO))

(OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP)))))
(VP (OR (AUX (DO RAN))

(AUX (BE RAN))
(AUX (NODAL RAN))
(AUX (TO RAN))

(AUX (HAVE RAN)))
(V TO)
(OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP)))))
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(VP (V RAN)

(OR (NP (N TO) (NP (N THE)) (NP (N CUP)))
(NP (DET TO) (N THE) (NP (N CUP)))

(NP (N TO)
(OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP)))))))

(VP (V RAN)

(OR (VP (V TO) (NP (N THE)) (NP (N CUP)))

(VP (V TO)
(OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP)))))))

(VP (V RAN)
(OR (PP (P TO) (NP (N THE)) (NP (N CUP)))

(PP (P TO)

(OR (NP (DET THE) (N CUP))
(NP (N THE) (NP (N CUP))))))))))



219

fracture:
(OR (AND (DEFINITION BILL N PERSON3)

(OR (AND (DEFINITION THE DET SEMINTICLESS)
(DEFINITION CUP N OBJECTi)
(DEFINITION TO P (PATH (FROM PERSONi) (TO ?0)))

(DEFINITION RAN V (GO ?0 ?1)))
(AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECTI)
(DEFINITION TO V (PATH (FROM PERSONI) (TO ?0)))

(DEFINITION RAN V (GO ?0 ?1)))
(AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECTI)
(DEFINITION TO N (PATH (FROM PERSONI) (TO ?0)))

(DEFINITION RAN V (GO ?0 ?1)))
(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)

(DEFINITION RAN TO SEMANTICLESS)

(DEFINITION RAN MODAL SEMANTICLESS)

(DEFINITION RAN BE SEMANTICLESS)
(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECTI)
(DEFINITION TO V (GO ?0 (PATH (FROM PERSONI) (TO ?1)))))

(AND (DEFINITION TO N PERSONI)

(DEFINITION THE DET SEMANTICLESS)
(DEFINITION CUP N OBJECTi)

(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))
(AND (DEFINITION TO V PERSONI)

(DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECTI)

(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))

(AND (DEFINITION TO P PERSONI)
(DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECTI)
(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))))
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(AND (DEFINITION BILL N PERSON3)
(OR (AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECTI)
(DEFINITION TO P (TO ?0))
(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION THE DET SEMANTICLESS)
(DEFINITION CUP N OBJECTI)

(DEFINITION TO V (TO ?0))
(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION THE DET SEMANTICLESS)
(DEFINITION CUP N OBJECT1)
(DEFINITION TO N (TO ?0))

(DEFINITION RAN V (GO ?0 ?1)))
(AND (OR (DEFINITION RAN HAVE SENANTICLESS)

(DEFINITION RAN TO SEMANTICLESS)
(DEFINITION RAN MODAL SEMANTICLESS)
(DEFINITION RAN BE SEMANTICLESS)
(DEFINITION RAN DO SEHANTICLESS))

(DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECTI)
(DEFINITION TO V (GO ?0 (TO ?1))))))

(AND (DEFINITION BILL N PERSON3)
(OR (AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECTI)
(DEFINITION TO P (AT ?o))
(DEFINITION RAN V (BE ?0 ?1)))

(AND (DEFINITION THE DET SEMANTICLESS)
(DEFINITION CUP N OBJECTI)
(DEFINITION TO V (AT ?0))
(DEFINITION RAN V (BE ?0 ?1)))

(AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECTI)
(DEFINITION TO N (AT ?o))
(DEFINITION RAN V (BE ?0 ?1)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)
(DEFINITION RAN TO SEMANTICLESS)
(DEFINITION RAN MODAL SEMANTICLESS)
(DEFINITION RAN BE SEMANTICLESS)
(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION THE DET SEMANTICLESS)
(DEFINITION CUP N OBJECTI)
(DEFINITION TO V (BE ?0 (AT ?1)))))))
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lcs: (OR (BE OBJECTI (AT PERSON))

(GO OBJECT1 (PATH (FROM PERSON1) (TO PERSON2)))
(GO OBJECTI (FROM PERSONl))

(GO OBJECTI (TO PERSON2))
(GO OBJECTI (PATH))
(BE OBJECT1 (AT PERSON2)))

sentence: (THE CUP SLID FROM JOHN TO MARY)
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parse:
(OR (S (OR (NP (DET THE)

(N CUP)
(SBAR (S (NP (N SLID)) (VP (V FROM) (NP (N JOHN))))))

(NP (DET THE)

(N CUP)

(OR (PP (P SLID) (NP (N FROM)))

(PP (P SLID) (VP (V FROM)))

(PP (P SLID) (PP (P FROM))))

(NP (N JOHN)))
(NP (DET THE) (N CUP) (NP (N SLID)) (PP (P FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP) (VP (V SLID)) (PP (P FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP) (PP (P SLID)) (PP (P FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP)

(OR (VP (OR (AUX (DO SLID))
(AUX (BE SLID))
(AUX (MODAL SLID))
(AUX (TO SLID))

(AUX (HAVE SLID)))
(V FROM))

(VP (V SLID) (NP (N FROM)))
(VP (V SLID) (VP (V FROM)))

(VP (V SLID) (PP (P FROM))))

(NP (N JOHN)))
(NP (DET THE) (N CUP) (NP (N SLID)) (VP (V FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP) (VP (V SLID)) (VP (V FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP) (PP (P SLID)) (VP (V FROM)) (NP (N JOHN)))
(NP (DET THE) (N CUP)

(OR (NP (DET SLID) (N FROM))

(NP (N SLID) (NP (N FROM)))
(NP (N SLID) (VP (V FROM)))
(NP (N SLID) (PP (P FROM))))

(NP (N JOHN)))
(NP (DET THE) (N CUP) (NP (N SLID)) (NP (N FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP) (VP (V SLID)) (NP (N FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP) (PP (P SLID)) (NP (N FROM)) (NP (N JOHN)))

(NP (DET THE)

(N CUP)
(SBAR (S (NP (N SLID)) (VP (if FROM))))
(NP (N JOHN)))

(NP (DET THE) (N CUP) (PP (P SLI;)) (NP (N FROM) (NP (N JOHN))))

(NP (DET THE) (N CUP) (VP (V SLID)) (NP (N FROM) (NP (N JOHN))))

(NP (DET THE) (N CUP) (NP (N SLID)) (NP (N FROM) (NP (N JOHN))))
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(NP (DET THE)
(N CUP)
(OR (NP (N SLID) (PP (P FROM)) (NP (N JOHN)))

(NP (N SLID) (VP (V FROM)) (NP (N JOHN)))
(NP (N SLID) (NP (N FROM)) (NP (N JOHN)))
(NP (DET SLID) (N FROM) (NP (N JOHN)))

(NP (N SLID) (NP (N FROM) (NP (N JOHN))))
(NP (N SLID) (VP (V FROM) (NP (N JOHN))))

(NP (N SLID) (PP (P FROM) (NP (N JOHN))))))
(NP (DET THE) (N CUP) (PP (P SLID)) (VP (V FROM) (NP (N JOHN))))
(NP (DET THE) (N CUP) (VP (V SLID)) (VP (V FROM) (NP (N JOHN))))

(NP (DET THE) (N CUP) (NP (N SLID)) (VP (V FROM) (NP (N JOHN))))

(NP (DET THE)
(N CUP)
(OR (VP (V SLID) (PP (P FROM)) (NP (N JOHN)))

(VP (V SLID) (VP (V FROM)) (NP (N JOHN)))
(VP (V SLID) (NP (N FROM)) (NP (N JOHN)))
(VP (OR (AUX (DO SLID))

(AUX (BE SLID))
(AUX (MODAL SLID))
(AUX (TO SLID))
(AUX (HAVE SLID)))

(V FROM)
(NP (N JOHN)))

(VP (V SLID) (NP (N FROM) (NP (N JOHN))))
(VP (V SLID) (VP (V FROM) (NP (N JOHN))))
(VP (V SLID) (PP (P FROM) (NP (N JOHN))))))

(NP (DET THE) (N CUP) (PP (P SLID)) (PP (P FROM) (NP (N JOHN))))

(NP (DET THE) (N CUP) (VP (V SLID)) (PP (P FROM) (NP (N JOHN))))
(NP (DET THE) (N CUP) (NP (N SLID)) (PP (P FROM) (NP (N JOHN))))

(NP (DET THE)
(N CUP)
(OR (PP (P SLID) (PP (P FROM)) (NP (N JOHN)))

(PP (P SLID) (VP (V FR3M)) (NP (N JOHN)))
(PP (P SLID) (NP (N FROM)) (NP (N JOHN)))

(PP (P SLID) (NP (N FROM) (NP (N JOHN))))
(PP (P SLID) (VP (V FROM) (NP (N JOHN))))

(PP (P SLID) (PP (P FROM) (NP (N JOHN)))))))
(VP (V TO) (NP (N MARY))))
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(S (OR (NP (DET THE) (N CUP) (NP (N SLID)))
(NP (DET THE) (N CUP) (VP (V SLID)))
(NP (DET THE) (N CUP) (PP (P SLID))))

(OR (VP (V FROM) (SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))
(VP (V FROM) (NP (N JOHN)) (PP (P TO)) (NP (N MARY)))
(VP (V FROM) (NP (N JOHN)) (VP (V TO)) (NP (N MARY)))

(VP (V FROM)
(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))
(NP (N JOHN) (PP (P TO))))

(NP (N MARY)))
(VP (V FROM) (NP (N JOHN)) (NP (N TO)) (NP (N MARY)))
(VP (V FROM) (SBAR (S (NP (N JOHN)) (VP (V TO)))) (NP (N MARY)))
(VP (V FROM) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))
(VP (V FROM)

(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))
(NP (N JOHN) (VP (V TO)) (NP (N MARY)))
(NP (N JOHN) (NP (N TO)) (NP (N MARY)))
(NP (N JOHN) (NP (N TO) (NP (N MARY))))
(NP (N JOHN) (VP (V TO) (NP (N MARY))))
(NP (N JOHN) (PP (P TO) (NP (N MARY))))))

(VP (V FROM) (NP (N JOHN)) (VP (V TO) (NP (N MARY))))
(VP (V FROM) (NP (N JOHN)) (PP (P TO) (NP (N MARY))))))

(S (NP (DET THE) (N CUP))
(OR (VP (V SLID)

(PP (P FROM))

(SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))
(VP (V SLID)

(VP (V FROM))
(SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))

(VP (V SLID)
(NP (N FROM))
(SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))

(VP (OR (AUX (DO SLID))

(AUX (BE SLID))
(AUX (MODAL SLID))
(AUX (TO SLID))

(AUX (HAVE SLID)))
(V FROM)
(SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))

(VP (V SLID)

(SBAR (S (NP (N FROM) (NP (N JOHN)))
(VP (V TO) (NP (N MARY))))))
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(VP (V SLID)

(OR (PP (P FROM) (SBAR (S (NP (N JOHN)) (VP (V TO)))))

(PP (P FROM) (NP (N JOHN)) (NP (N TO)))
(PP (P FROM)

(OR (NP (N JOHN) (NP (N TO)))
(NP (N JOHN) (VP (V TO)))
(NP (N JOHN) (PP (P TO)))))

(PP (P FROM) (NP (N JOHN)) (VP (V TO)))
(PP (P FROM) (NP (N JOHN)) (PP (P TO))))

(NP (N MARY)))
(VP (V SLID) (PP (P FROM)) (NP (N JOHN)) (PP (P TO)) (NP (N MARY)))
(VP (V SLID) (VP (V FROM)) (NP (N JOHN)) (PP (P TO)) (NP (N MARY)))
(VP (V SLID) (NP (N FROM)) (NP (N JOHN)) (PP (P TO)) (NP (N MARY)))
(VP (OR (AUX (DO SLID))

(AUX (BE SLID))
(AUX (MODAL SLID))
(AUX (TO SLID))
(AUX (HAVE SLID)))

(V FROM)
(NP (N JOHN))
(PP (P TO))
(NP (N MARY)))

(VP (V SLID) (NP (N FROM) (NP (N JOHN))) (PP (P TO)) (NP (N MARY)))
(VP (V SLID) (VP (V FROM) (NP (N JOHN))) (PP (P TO)) (NP (N MARY)))
(VP (V SLID) (PP (P FROM) (NP (N JOHN))) (PP (P TO)) (NP (N MARY)))
(VP (V SLID)

(OR (VP (V FROM) (SBAR (S (NP (N JOHN)) (VP (V TO)))))
(VP (V FROM) (NP (N JOHN)) (NP (N TO)))

(VP (V FROM)
(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))
(NP (N JOHN) (PP (P TO)))))

(VP (V FROM) (NP (N JOHN)) (VP (V TO)))
(VP (V FROM) (NP (N JOHN)) (PP (P TO))))

(NP (N MARY)))
(VP (V SLID) (PP (P FROM)) (NP (N JOHN)) (VP (V TO)) (NP (N MARY)))

(VP (V SLID) (VP (V FROM)) (NP (N JOHN)) (VP (V TO)) (NP (N MARY)))
(VP (V SLID) (NP (N FROM)) (NP (N JOHN)) (VP (V TO)) (NP (N MARY)))
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(VP (OR (AUX (DO SLID))
(AUX (BE SLID))
(AUX (MODAL SLID))

(AUX (TO SLID))
(AUX (HAVE SLID)))

(V FROM)
(NP (N JOHN))

(VP (V TO))
(NP (N MARY)))

(VP (V SLID) (NP (N FROM) (NP (N JOHN))) (VP (V TO)) (NP (N MARY)))

(VP (V SLID) (VP (V FROM) (NP (N JOHN))) (VP (V TO)) (NP (N MARY)))

(VP (V SLID) (PP (P FROM) (NP (N JOHN))) (VP (V TO)) (NP (N MARY)))

(VP (V SLID)

(OR (NP (N FROM) (SBAR (S (NP (N JOHN)) (VP (V TO)))))

(NP (N FROM) (NP (N JOHN)) (NP (N TO)))

(NP (N FROM)
(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO)))))

(NP (N FROM) (NP (N JOHN)) (VP (V TO)))

(NP (N FROM) (NP (N JOHN)) (PP (P TO))))

(NP (N MARY)))
(VP (OR (AUX (DO SLID))

(AUX (BE SLID))
(AUX (MODAL SLID))

(AUX (TO SLID))
(AUX (HAVE SLID)))

(V FROM)

(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO))))
(NP (N MARY)))

(VP (V SLID)

(NP (N FROM))
(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO))))
(NP (N MARY)))

(VP (V SLID)
(VP (V FROM))

(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))
(NP (N JOHN) (PP (P TO))))

(NP (N MARY)))
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(VP (V SLID)

(PP (P FROM))

(OR (NP (N JOHN) (NP (N TO)))
(NP (N JOHN) (VP (V TO)))
(NP (N JOHN) (PP (P TO))))

(NP (N MARY)))
(VP (V SLID) (PP (P FROM)) (NP (N JOHN)) (NP (N TO)) (NP (N MARY)))

(VP (V SLID) (VP (V FROM)) (NP (N JOHN)) (NP (N TO)) (NP (N MARY)))

(VP (V SLID) (NP (N FROM)) (NP (N JOHN)) (NP (N TO)) (NP (N MARY)))
(VP (OR (AUX (DO SLID))

(AUX (BE SLID))
(AUX (MODAL SLID))

(AUX (TO SLID))
(AUX (HAVE SLID)))

(V FROM)
(NP (N JOHN))
(NP (N TO))
(NP (N MARY)))

(VP (V SLID) (NP (N FROM) (NP (N JOHN))) (NP (N TO)) (NP (N MARY)))
(VP (V SLID) (VP (V FROM) (NP (N JOHN))) (NP (N TO)) (NP (N MARY)))

(VP (V SLID) (PP (P FROM) (NP (N JOHN))) (NP (N TO)) (NP (N MARY)))
(VP (V SLID)

(SBAR (S (NP (N FROM) (NP (N JOHN))) (VP (V TO))))
(NP (N MARY)))

(VP (OR (AUX (DO SLID))
(AUX (BE SLID))
(AUX (MODAL SLID))
(AUX (TO SLID))
(AUX (HAVE SLID)))

(V FROM)
(SBAR (S (NP (N JOHN)) (VP (V TO))))

(NP (N MARY)))
(VP (V SLID)

(NP (N FROM))
(SBAR (S (NP (N JOHN)) (VP (V TO))))
(NP (N MARY)))

(VP (V SLID)
(VP (V FROM))
(SBAR (S (NP (N JOHN)) (VP (V TO))))

(NP (N MARY)))
(VP (V SLID)

(PP (P FROM))
(SBAR (S (NP (N JOHN)) (VP (V TO))))
(NP (N MARY)))
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(VP (V SLID) (PP (P FROM) (NP (N JOHNM))) (NP (N TO) (NP (N MARY))))

(VP (V SLID) (VP (V FROM) (NP (N JOHN))) (NP (N TO) (NP (N MARY))))

(VP (V SLID) (NP (N FROM) (NP (N JOHN))) (NP (N TO) (NP (N MARY))))

(VP (OR (AUX (DO SLID))

(AUX (BE SLID))
(AUX (MODAL SLID))

(AUX (TO SLID))
(AUX (HAVE SLID)))

(V FROM) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))

(VP (V SLID) (NP (N FROM)) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))

(VP (V SLID) (VP (V FROM)) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))

(VP (V SLID) (PP (P FROM)) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))
(VP (V SLID)

(PP (P FROM))

(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))

(NP (N JOHN) (VP (V TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO) (NP (N MARY))))

(NP (N JOHN) (VP (V TO) (NP (N MARY))))

(NP (N JOHN) (PP (P TO) (NP (N MARY))))))

(VP (V SLID)
(VP (V FROM))

(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))

(NP (N JOHN) (VP (V TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO) (NP (N MARY))))
(NP (N JOHN) (VP (V TO) (NP (N MARY))))

(NP (N JOHN) (PP (P TO) (NP (N MARY))))))
(VP (V SLID)

(NP (N FROM))
(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))

(NP (N JOHN) (VP (V TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO) (NP (N MARY))))

(NP (N JOHN) (VP (V TO) (NP (N MARY))))

(NP (N JOHN) (PP (P TO) (NP (N MARY))))))

(VP (OR (AUX (DO SLID))

(AUX (BE SLID))
(AUX (MODAL SLID))

(AUX (TO SLID))

(AUX (HAVE SLID)))
(V FROM)

(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))

(NP (N JOHN) (VP (V TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO) (NP (N MARY))))

(NP (N JOHN) (VP (V TO) (NP (N MARY))))

(NP (N JOHN) (PP (P TO) (NP (N MARY))))))
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(VP (V SLID)
(OR (NP (N FROM)

(SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))

(NP (N FROM) (NP (N JOHN)) (PP (P TO)) (NP (N MARY)))
(NP (N FROM) (NP (N JOHN)) (VP (V TO)) (NP (N MARY)))
(NP (N FROM)

(OR (NP (N JOHN) (NP (N TO)))

(NP (0 JOHN) (VP (V TO)))
(NP (N JOHN) (PP (P TO))))

(NP (N MARY)))

(NP (N FROM) (NP (N JOHN)) (NP (N TO)) (NP (N MARY)))
(NP (N FROM)

(SBAR (S (NP (N JOHN)) (VP (V TO))))
(NP (N MARY)))

(NP (N FROM) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))
(NP (N FROM)

(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))
(NP (N JOHN) (VP (V TO)) (NP (N MARY)))
(NP (N JOHN) (NP (N TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO) (NP (N MARY))))

(NP (N JOHN) (VP (V TO) (NP (N MARY))))
(NP (N JOHN) (PP (P TO) (NP (N MARY)))))

(NP (N FROM) (NP (N JOHN)) (VP (V TO) (NP (N MARY))))
(NP (N FROM) (NP (N JOHN)) (PP (P TO) (NP (N MARY))))))

(VP (V SLID) (PP (P FROM) (NP (N JOHN))) (VP (V TO) (NP (N MARY))))
(VP (V SLID) (VP (V FROM) (NP (N JOHN))) (VP (V TO) (NP (N MARY))))
(VP (V SLID) (NP (N FROM) (NP (N JOHN))) (VP (V TO) (NP (N MARY))))
(VP (OR (AUX (DO SLID))

(AUX (BE SLID))

(AUX (MODAL SLID))
(AUX (TO SLID))
(AUX (HAVE SLID)))

(V FROM)

(NP (N JOHN))
(VP (V TO) (NP (N MARY))))

(VP (V SLID) (NP (N FROM)) (NP (N JOHN)) (VP (V TO) (NP (N MARY))))

(VP (V SLID) (VP (V FROM)) (NP (N JOHN)) (VP (V TO) (NP (N MARY))))
(VP (V SLID) (PP (P FROM)) (NP (N JOHN)) (VP (V TO) (NP (N MARY))))
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(VP (V SLID)
(OR (VP (V FROM)

(SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))
(VP (V FROM) (NP (N JOHN)) (PP (P TO)) (NP (N MARY)))
(VP (V FROM) (NP (N JOHN)) (VP (V TO)) (NP (N MARY)))
(VP (V FROM)

(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO))))
(NP (N MARY)))

(VP (V FROM) (NP (N JOHN)) (NP (N TO)) (NP (N MARY)))
(VP (V FROM)

(SBAR (S (NP (N JOHN)) (VP (V TO))))
(NP (N MARY)))

(VP (V FROM) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))
(VP (V FROM)

(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))
(NP (N JOHN) (VP (V TO)) (NP (N MARY)))
(NP (N JOHN) (NP (N TO)) (NP (N MARY)))
(NP (N JOHN) (NP (N TO) (NP (N MARY))))
(NP (N JOHN) (VP (V TO) (NP (N MARY))))
(NP (N JOHN) (PP (P TO) (NP (N MARY))))))

(VP (V FROM) (NP (N JOHN)) (VP (V TO) (NP (N MARY))))
(VP (V FROM) (NP (N JOHN)) (PP (P TO) (NP (N MARY))))))

(VP (V SLID) (PP (P FROM) (NP (N JOHN))) (PP (P TO) (NP (N MARY))))
(VP (V SLID) (VP (V FROM) (NP (N JOHN))) (PP (P TO) (NP (N MARY))))
(VP (V SLID) (NP (N FROM) (NP (N JOHN))) (PP (P TO) (NP (N MARY))))
(VP (OR (AUX (DO SLID))

(AUX (BE SLID))
(AUX (MODAL SLID))
(AUX (TO SLID))
(AUX (HAVE SLID)))

(V FROM)

(NP (N JOHN))
(PP (P TO) (NP (N MARY))))

(VP (V SLID) (NP (N FROM)) (NP (N JOHN)) (PP (P TO) (NP (N MARY))))
(VP (V SLID) (VP (V FROM)) (NP (N JOHN)) (PP (P TO) (NP (N MARY))))

(VP (V SLID) (PP (P FROM)) (NP (N JOHN)) (PP (P TO) (NP (N MARY))))
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(VP (V SLID)
(Ok (PP (P FROM)

(SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))

(PP (P FROM) (NP (N JOHN)) (PP (P TO)) (NP (N MARY)))

(PP (P FROM) (NP (N JOHN)) (VP (V TO)) (NP (N MARY)))
(PP (P FROM)

(OR (NP (N JOHN) (NP (N TO)))
(NP (N JOHN) (VP (V TO)))
(NP (N JOHN) (PP (P TO))))

(NP (N MARY)))
(PP (P FROM) (NP (N JOHN)) (NP (N TO)) (NP (N MARY)))

(PP (P FROM)
(SBAR (S (NP (K JOHN)) (VP (V TO))))
(NP (N MARY)))

(PP (P FROM) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))

(PP (P FROM)
(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))

(NP (N JOHN) (VP (V TO)) (NP (N MARY)))
(NP (N JOHN) (NP (N TO)) (NP (N MARY)))
(NP (N JOHN) (NP (N TO) (NP (N MARY))))

(NP (N JOHN) (VP (V TO) (NP (N MARY))))
(NP (N JOHN) (PP (P TO) (NP (N MARY))))))

(PP (P FROM) (NP (N JOHN)) (VP (V TO) (NP (N MARY))))

(PP (P FROM) (NP (N JOHN)) (PP (P TO) (NP (N MARY)))))))))
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fracture: (AND (DEFINITION THE DET SEMANTICLESS)
(DEFINITION CUP N OBJECTi)
(OR (AND (DEFINITION JOHN N PERSONI)

(DEFINITION FROM N (FROM ?0))
(DEFINITION MARY N PERSON2)
(DEFINITION TO P (TO ?0))
(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))

(AND (DEFINITION JOHN N PERSON1)
(DEFINITION FROM V (FROM ?0))
(DEFINITION MARY N PERSON2)
(DEFINITION TO P (TO ?0))
(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))

(AND (DEFINITION JOHN N PERSONI)
(DEFINITION FROM P (FROM ?0))
(DEFINITION MARY N PERSON2)

(DEFINITION TO P (TO ?0))
(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))

(AND (DEFINITION JOHN N PERSONI)
(DEFINITION FROM N (FROM '0))
(DEFINITION MARY N PERSON2)
(DEFINITION TO V (TO ?0))
(DEFINITION SLID V (GO ?0 (PATH ?i ?2))))

(AND (DEFINITION JOHN N PERSONI)
(DEFINITION FROM V (FROM ?0))
(DEFINITION MARY N PERSON2)
(DEFINITION TO V (TO ?0))
(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))

(AND (DEFINITION JOHN N PERSONI)
(DEFINITION FROM P (FROM ?0))
(DEFINITION MARY N PERSON2)
(DEFINITION TO V (TO ?0))
(DEFINITION SLID V (GO ?0 (PATH ?l ?2))))

(AND (DEFINITION JOHN N PERSONI)
(DEFINITION FROM N (FROM ?0))
(DEFINITION MARY N PERSON2)

(DEFINITION TO N (TO ?0))
(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))

(AND (DEFINITION JOHN N PERSONI)

(DEFINITION FROM V (FROM ?0))
(DEFINITION MARY N PERSON2)
(DEFINITION TO N (TO ?0))
(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))

(AND (DEFINITION JOHN N PERSONI)
(DEFINITION FROM P (FROM ?0))
(DEFINITION MARY N PERSON2)

(DEFINITION TO N (TO ?0))
(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))))
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lcs: (OR (ORIENT PERSONI (TO PERSOI2))
(ORIENT PERSON2 (TO PERSON3))
(ORIENT PERSON3 (TO PERSONI)))

sentence: (JOHN FACED MARY)
parse: (S (lP (N JOHN)) (VP (V FACED) (NP (N MARY))))
fracture: (AND (DEFINITION JOHN N PERSONI)

(DEFINITION MARY N PERSON2)
(DEFINITION FACED V (ORIENT ?0 (TO ?1))))
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FACED: [V) (ORIENT ?0 (TO ?1))
SLID: [V) (GO ?0 (PATH ?l ?2))
FROM: *[P] (FROM ?0)
TO: *(u] (TO ?0)
RAN: [I] (GO 0 ?1)
THE: EDET] SEMANTICLESS
CUP: )N] OBJECTI
BILL: WI] PERSON3
MARY: )N] PERSON2
JOHN: [N] PERSONI
ROLLED: [IE (GO ?0 (PATH))



Appendix B

Kenunia in Operation

This appendix contains a trace of KENUNIA processing the corpus from figure 4.8 using the prior semantic
knowledge from figure 4.10. Given this information, KENUNIA can derive the syntactic parameter settings
and word-to-category mappings illustrated in figure 4.11. This trace depicts KENUNIA processing the
corpus, utterance by utterance, showing the interim language model after each utterance, as well as the
hypothesized analysis for each utterance. When no analysis is possible, the propositions to be retracted
from the language model are highlighted as culprits.

John roll -ed.

{AGENT person1, THEME person, }

Syntactic Parameters:

[I initial]
[I1 final]
[CO final]

C2

Lexicon: I
C1

cup: [X"] object,{}
-ed: [V2 ] {} i-
John: [D2 ] person1 {} 

Co

slide: [Xn] I{THEME: 11 
2  I"1 1

that: [X n] _L{} < I -"2o V
: [C] 1{} John

face: [X" ] i{PATIENT : 1, GOAL : 0} I
from: [Xn] I{SOURCE: 0} roll -ed

Bill: [X"] person3 {}
the: [Xn] _L1

Mary: [Xn] person2 {}
to: [Xn] .L{GOAL: 0}

run: [X" I_{THEME: 11
roll: [1°] I{THEME: 1}
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Mary roll -d.

{AGENT: person.,. THEME: person.}

Syntactic Parameters:

[10 initial]
[11 final]
[CO final]

C
2

Lexicon: I

cup: [X'] object, {}

-ed: [V'2 ] ±14}
John: [D2] person1 {} I c

slid(: [X"] ±{THEME:11 D1 0
that: [Xv] ±L{} I D

0: [CO] _10{} Mary I v
face: [Xn] 1{PATIENT: I,GOAL: 0} I I
from: [X"] _1_ SOURCE : 0} roll -td

Bill: [X"] person3 {}
the: [X"] 10
Mary: [D2• person.{}
to: [Xj] .L{GOAL : O0
run: [X"] 1{THEME: 1}
roll: [f0] ±{THEME: 1}
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Bill roll - d.

{AGENT person3 , THE M E persona}

Syntactic Parameters:

[10 initial]
[1' final]
[C( final]

(2

Lexicon: I
Cl

cup: [X"] objectC{}
-ed: [V'2] -LI) c-•'o
John: [D2] person,{}
slide: [X"] ±{THEME: :1 D 2  11 0

that: [X"] {}
0: c"°] ±{I BillI

face: [X"] I{PATIENT: I,GOAL: 0}

from: [X"] I{SOURCE: 0} roll -ed

Bill: [D2] person 3{}
the: [X"] .{}
Mary: [D2] person2 {}
to: jXn] I{GOAL: 0}

run: [X"] I{THEME: 1}

roll: [I1] I{THEME: 11
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Tht cup roll -fd.

{THEME: object,}

Syntactic Parameters:

[Do initial]
[10 initial]
[I' final] c2

[CO final] I

Lexicon: 
C1

cup: [N(] object,1{} [ C

-ed: [V21] {} I
John: [D2] person 1{} D
slide: [Xv] -{THEME: 1i 1
that: [X-] ]-{}

0: [C0] 1_{}
face: [XV] 11{PATIENT : 1, GOAL 0} D N roll -(d

from: [X"] _L{SOURCE : 0} The cup

Bill: [D21 person3 {}

the: [DO] I-{}
Mary: [D 21 person_.{}
to: [Xn] 1{GOAL: 01
run: [Xn] I{THEME: 1}

roll: [1°] I{THEME: 11
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Bill run -ed to Mary.

{AGENT: person 3 , THEME person3 , GOAL: person.}

Syntactic Parameters:

[P0 initial]
[Do initial] (,_
[I initial]
[I' final] c(

[CO final]
[adjoin V2 right]

Lexicon:

cup: [N2] objectl{} D 1

-ed: [V2] j±{} Bill
John: [D2 ] person,{}
slide: [X"] I{THEME : 1} )un p
that: [X "s] 1 0 

r v,

: [CIO] 111 -ed P
face: [X"] JI_{PATIENT : 1,GOAL :0})
from: [Xn] _{SOURCE : O} P0  D2

Bill: [D-2 1 person3 {} I I
the: [Do] 1{} to Mary

Mary: [D2] person{ }
to: [PO] I_{GOAL: 0}
run: [(0] 1 {THEME : 1}
roll: [I°] I{THEME: 1}
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Bill ruit -d froom John.

{AGENT person3 . THEME person3 . SOURCE: person1,

Syntactic Parameters:

[P0 initial]
[Do initial] ("'2

[10 initial] I
[11 final] C'

[Co final]
[adjoin V right]

Lexicon: I

cup: [N-] object,{} I
-ed: [v'2] ±{} Bill
John: [D2 ] person,{}

slide: [X] I{THEME: 11} r ,2  p

that: [xI ] 1r} I '

0: [C°] -ed PI

face: [XV] 11PATIENT: 1, GOAL 0} pd

from: [P01 I{SOURCE: 0} P0  D-
Bill: [D2] person3 {} I I
the: [DO] 1{} froml? John

Mary: [D 2 ] person2 { }
to: [PO] I{GOAL: 0}
run: [I'] ±{THEME: 1}

roll: [10] .{THEME: 1}
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Bill run -td to tht cup.

{AGENT person3 , THEME :person3 . GOAL object1,}

Syntactic Parameters:
(-"

[P0 initial]

[Do initial] (,
[10 initial]
[11 final]
[C' final]
[adjoin V- right] V

Lexicon: D1"I

cup: [N-] object,{} Bill -
-ed: [V 2] i{}
John: [D2] person 1{} run \', P2

slide: [Xn] I{THEME: 11 1 1
that: [X'1] 0{} -ed P1

0: [C°] _L{1 p.
face: [Xn] 1{PATIENT: 1, GOAL :0 }
from: [PO] _I{SOURCE : I} 1o

Bill: [D2 ] person 3 { } D

the: [Do] _L{} D

Mary: [D2 ] person.{} I I
to: [PO] .{({OAL: 0 the cup

run: [10] I{THEME: 1}
roll: [I'] I{THEME: 11
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Thf cups hdt -td fr!om John to M1ary.

{THEME :object,. SOURCE: person,. GOAL person.,)

Syntactic Parameters:

[P0 initial]
[Do initial] (1
(10 initial]

[I final]
[Co final] C (

[adjoin k-2 right] 0

Lexicon:

cup: [N2] object {} D

-e: [V2] D0  N 2
John: [D2] person1 { } I I sdP

slide: [10] I{THEME: 11 The cup \._
that: [X"s] 1{}
0: [C0] 1{ U p!1
face: [Xn] 1{PATIENT: 1, GOAL :} 0I
from: [P] I{SOURCE: 0 -ed p P D
Bill: [D2] person3a{ } I
the: [Do] ±{} p to Mary

Mary: [D2 ] person9 {} I
to: [PO] I{GOAL : 01 from John

ru U: [1O] -{THEME: 11
roll: [I'] -J-{THEME: 1)
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John fact -td Mary.

{AGENT person,, PATIENT: person 1 . GOAL: person.,}

Culprits:

category(-ed) = V
bar-level(-ed) = 2

Syntactic Parameters:

[P0 initial]
[Do initial]
[10 initial]
[I1 final]
[C° final]
[adjoin V2 right]

Lexicon:

cup: [N2 ] object 1{}
-ed: [X11] ±{}
John: [D 2 ] person,{}
slide: [10] _I_{THEME : 1}
that: [Xv] 10(

0: [C°] I{}
face: [X"] J-1{PATIENT: 1, GOAL 0}

from: [PO] _I{SoURCE: 01
Bill: [D2] person 3{}
the: [DO] l{}
Mary: [D2] person,{ }
to: [P0 ] 3I{GOAL: 0}
run: [10] I{THEME: 11

roll: [1o] I{THEME: 11
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John fact -ed .lJary.

{AGENT" person,, PATIENT person,. GOAL: person.,}

Syntactic Parameters:

[V0 final]
[V\ final]
[P0 initial]
[Do initial] C 2

[10 initial]

[11 final] (,
[CO final]
[adjoin V2 right]
[adjoin I° left] 1- )

Lexicon:

cup: [N2] object1 {} I
-ed: [I0] _L{} John
John: [D2 ] person1 {}
slide: [1'] I{THEME: :11 \, -j-" 2 v I
that: [X"] 10{}] I
: [Co1 L{} fare -ed 2  \'

face: [V'] 1{PATIENT : 1.GoAL :0} 1I -
from: [PO] I{SOURCE: 0) Mary t
Bill: [D ] person3 {}
the: [Do] {1}
Mary: [D2] person2 {}
to: [PO] I{GOAL: 0)

run: [1'] I{THEME: 1)
roll: [V°] I{THEME: 1}



245

John roll - d.

{AGENT person1. THEMIE person1,

Culprits.

category(roll) = I

Syntactic Parameters:

[V) final]
[V1 final]
[PO initial]
[D' initial]
[I° initial]
[I' final]
[CO filial]

[adjoin V2 right]
[adjoin 1° left]

Lexicon:

cup: [N-2] object 1{)
-ed: [I] 10{}

John: [D-] person1 {}
slide: [I1] .{THEME : 11
that: [X'] 1{}
0: [C°] J{}
face: [V°] If{PATIENT: 1,GOAL 0}
from: [PO] _{SOURCE : 0}
Bill: [D-2 ] person 3 {}
the: [DO] I{}
Mary: [D"2 ] person.{}
to: [PO] _{GOAL: 0}

run: [I1] If{THEME: 1}
roll: [X°] I{THEME: 11
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Jobin roll -' d.

i perso I fi Em F person1

Syntactic Parameters:

[V" fiialj
[VN fiiial]
[1)" initial]
[D" initial]
[1P initial]
[I final] k
[(C" final]
[adjoin V2 right]

[adjoin C° left]

Lexicon: !0

cup: [Nl] object 1{ } I
-ed: [10] ±{} I oh,,n X-
Jf(/: [1D 111]
Johi: [D'-1 person, {1 V2 v I
slit: [101 1{THEME • 1}

that: [X's] I roll -(d I t ¶
S[("] i{}

facr: [V"] 1{PATIENT :1, GOAL : 0}
from: [P)] {SOURCE : 0}
Bill: [0"2] person3 {}
ihc: [DO] I_(}
Mary: [D2] person.,{}

to: [p"] ±{(JOAL : 01

ruD: [I1] I{THEME: I}
roll: [V"] I{'THEME }1)
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Mary roll -td.

{ AGENT person. THEME : person.,

Syntactic Parameters:

[V° final]

[V final]
[pU initial]
[Do initial]
[I initial]
[I' final] (!l

[Co final]
[adjoin V-2 right]
[adjoin I) left]

Lexicon:

cup: [N2] object1 {} I
-ed: [It,] 1{} Mary 1(V 2

John: [D 2] person,{} \ Io Df

slidc [I°] _L{THEME 1 1}

that: [X"] _1_{} ol I \o

[Croll -ed

face: [Vtl] 1{PATIENT: 1,GoAL 0}
fron: [PO] I{SOURCE O}

Bill: [D2] person3 { }
the: [DO] _{}
Mary: [D2 ] person2 {}
to: [PO] I{GOAL : 0}
run: [10] &L{THEME : 1}
roll: [\Vo] L{THEME : 1
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Bill roll -(d.

{AGENT person 3 , THEME: persoUna

Syntactic Parameters:

[N," final]
[V' final]

[PO initial]
[Do initial]
[I initial] C

[I' final] ('I

[Co final]
[adjoin V2 right]
[adjoin 1° left] I- C0

Lexicon:

cup: [N"2] object{} Bl
-ed: [i0] .1{}B
John: [D"2] person,{}
slide: [1o] ±{THEME 11 }2 D"

that: 1X"]I I I 0
tha: [CO] 11 roll -ed \.€: [C0] ±~{}I

face: [V°] J{PATIENT: 1, GOAL : 0)

from: [PO] ±{SSOURCE : 0

Bill: [D2] person3 {}
the: [DO] 1{}
Mary: [D2] person9 {)
to: [PO] I{GOAL: 01

run: [10] ±{THEME:1}

roll: [Vol] I{THEME: 1}
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Tht cup roll -(d.

{TTHEME object, }

Syntactic Parameters:

[V"' final]
[V1 final]
[PO initial]
[Do initial] (,2
[10 initial]
[I final] (!
[CO final]
[adjoin V2 right]
[adjoin 10 left] I-0

Lexicon: I

cup: [N-] objectf1I D{1

-ed: [I°] ±{}1-D
John: [D-2 ] person {}2
slide: [Ia] I{THEME: 1} DI N 0 I V'
that: [X] ±{ Th cuP roll -ed t VU

o: [C'] ±{}

face: [V°] 1{PATIENT: 1,GOAL :01
froln: [PO] I {SOURCE : 01 t

Bill: [D2] person3{}
the: [Do] ±{}
Mary: [D2] person {}
to: [PO] ±{GOAL: 0}
ru n: [11] ±{THEME: 11
roll: [V°] I{THEME: 11
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Bill run -ed to Mary.

{AGENT: person3 . THEME persona. GOAL person.,

Culprits:

category(run) = I

Syntactic Parameters:

[No final]
[V' final]
[P0 initial]
[Do initial]
[I1 initial]
[I final]
[C' final]
[adjoin V2 right]
[adjoin jO left]

Lexicon:

cup: [N2] object 1{}
-ed: [101 3_{}
John: [D2] person1 {}
slide: [10] -{THEME :11
that: [X"1] 0{}
0: [C°] 11{1
face: [V°] 1{PATIENT : 1.GOAL :01
from: [Po] _I{SoURCE: 01
Bill: [D2] person3 {}
the: [DO] 1{}
Mary: [D2 ] person, { I
to: [PO] I{GOAL: 01
run: [X0] .L-{THEME: I}

roll: [V'] I_{THEME:1}
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Bill run -fd to Marg.

{AGENT : persou3. THEME: person 3 , GOAL: person_,

Syntactic Parameters:

[Vo final]
[V' final]
[P0 initial] 

c2

[Do initial] ('I

[I initial]
[11 final]
[CO final]

[adjoin V2 right] I(0
[adjoin I° left] I C

Lexicon:

cup: [Nf] object1 {} Bill
-ed: [10] 111{} I
John: [D2] person,({} Vp
slide: [i0] I{THEME: 11 I" I
that: [X] ±I} run -ed D2 vI p

face: [Vo] I{PATIENT: 1, GOAL: 0} 1 10 p• _D
from: [PO] ±{SOURCE: 01 1

Bill: [D2] person3 {} t to Mary
the: [DO] 1{}
Mary: [D2] person2 {}
to: [PO] I{GOAL : 0}
run: [V°l] I{THEME: 1}
roll: [Vo] 1{THEME: 11
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Bill run -td fromn John.

{AGENT persona, THEME" person3, SOURCE: person1 }

Syntactic Paramneters:

[V0 final]
[V1 final]
[PO initial] ("-

[Du initial] (!1
[10 initial]
[I' final]
[CO final]
[adjoin V "2 right] (,0
[adjoin I° left]

Lexicon:

cup: [N2] object,1  BIill
-ed: [NO0 j{}
John: [D2 ] person,{}
slide: [I°] .{THEME: 11 I 2 p 2

that: I I
that [X 1 run -ed -Dp
[C0] 111 Di v' Pfac: [c°] ±{

face: [V°] 1{PATIENT : 1,GOAL :0} P p D
from: [PO] 1{SOURCE: 01 D

Bill: [D2] person 3 { I fron John
the: [DO] I{}
Mary: [D21] person2 {}
to: [P0] 1{GOAL: 01
run: [V°] i_{THEME: 1}
roll: [V'] I{THEME: 11
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Bill run -ed to tht cup.

{AGENT person3 . THEME person3 , GOAL object1 }

Syntactic Parameters:

[V° final] C'-
[V1 final]
[PO initial]

[Do initial]
[(1 initial]
[I final]
[C0 final] 1 c)

[adjoin V2 right]

[adjoin 1° left] _'

Lexicon: Bill
__ _ _ __ _ _ __ _ _ __ _ _ __ _ _ _I -T2

cup: [N2 ] object 1 {}
-ed: [I°] j{} \1' v

John: [D"2] person1 {} I I
slide: [10] I{THEME:11 run -ed l 1
that: [Xn] _L{} I

0: [C I {} O
face: [V°] 1{PATIENT: 1, GOAL :} 0
from: [PO] I{SOURCE:O0} to

Bill: [D13] persOn3 {}
the: [DO] J1_ D N2

Mary: [D"] person,{ } thf cup
to: [P 0] IL{GOAL : 0}

run: [VO] .L{THEME : 11
roll: [V°] I_{THEME: 1}
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The cup slide -ed from John to Mary.

{THEME : object,. SOURCE: person .GOAL : person.,

Culprits:

category(slide) = I

Syntactic Parameters:

[V° final]
[V1 final]
[PO initial]
[Do initial]
[10 initial]
[I' final]
[C' final]
[adjoin V2 right]

[adjoin 10 left]

Lexicon:

cup: [N2 ] object 1 {}

-ed: [101 1{}
John: [D2] person1 {}

slide: [X°] I{THEME: 1}
that: [Xn] _L{}

0: [c0] o{}
face: [V°] 11{PATIENT: 1, GOAL: 0)

from: [P 0] &{SoURCE: 0}
Bill: [D-2] person3 {}
the: [Do] 1{)

Mary: [D2] person,{}
to: [PO] -{GOAL: 0}
run: [V0] 1{THEME: 1}
roll: [V°o] I{THEME: 11



255

The cup slide -ed from John to Mary.

{THEME : object1 , SOURCE: person,, GOAL: person.}

Syntactic Parameters:

[V0 final]
[V' final] (C2

[P0 initial]
[Do initial] (.1

[I0 initial]
[I1 final]
[C' final]
[adjoin V2 right]
[adjoin 10 left]

Lexicon: D,

cup: [N2] object1 {} fDo N-d [o] ±}I I V
-ed: [10] 11 T c I V

John: [D2] person,{} slid -cd P2

slide: (V0] I{THEME: 1}
that: [X2] j{} \'P-

[CO] ±{} I pW 1)2
face: [V°] I..{PATIENT: 1,GOAL : 1} 1 i

from: [P0 ] ±{SOURCE: 0} 0 V P,0  ._ to Mary

Bill: [D2] person3 {} t V°

the: [DO] 1_{} t fron John
Mary: [D2] person2 {}
to: [P0 ] J.{GOAL: 01
run: [VO] 1{THEME: 1}
roll: [V°] I{THEME: 11
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John facf -ed Mary.

{AGENT: person,, PATIENT persounGOAL: person.,)

Syntactic Parameters:

[V° final]

[V1 final]
[P0 initial]
[Do initial] c'2
[10 initial]

[I1 final] (,1
[C0 final]

[adjoin V2 right.]
[adjoin 1° left] 1-

Lexicon:

cup: [NW] object {} I

-ed: [10] I1} John I
John: [D"2 ] person1 {}

slide: [Vo] _{THEME: 1) V2 v I1
that: [X] _{} 1 D

0: [Col 0{} fac( -ed 2 v0
face: [V°] I{PATIENT : 1,GOAL: 0} 1 1

from: [PO] -{SOURCE : 0} Mary I
Bill: [D-2] person3 {}
the: [DO] 1{}
Mary: [D2] person9 {}
to: [PO] i{GOAL : 0}

run: [V°] _L{THEME: 1}

roll: [Vo] 3L{THEME : 11
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John roll -(d.

{AGENT : person 1 . THEME " person,)

Syntactic Parameters:

[V0 final]
[V1 final]
[PO initial]
[Do initial]
[10 initial] (.-
[11 final]

[CO final]
[adjoin V,2 right]
[adjoin 10 left]

Lexicon:

cup: [N2 ] objectI{} I
-ed: [10] J{1{ ,/o.
John: [D2 ] person,{ }
slide: [Vt ] 1 {THEME: I} DI V
that: [X"] l{} o - I 1

IC 1 0roll -(d t \'0: [(c0] j{}

face: [V°] 1{PATIENT: 1. GOAL 0}1
from: [PO] I{SOURCE 0}

Bill: [D2] person 3 {}
the: [DO] 1{}
Mary: [D2] person.{}
to: [PO] If{GOAL: 01
run: [V0] 1{THEME: 1}

roll: [V°] 1{THEME : 11
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Mary roll -ed.

{AGENT: person,, THEME persou.i}

Syntactic Parameters:

[V0 final]
[V1 final]
[P0 initial]
[DO initial][10 initial](,

[I1 final]
[Co final]
[adjoin V2 right.]
[adjoin 10 left] I-

Lexicon:

cup: [NW] object1 {} I
-ed: [Io] j{} Mary

John: [D2] person,{} -0 D V
slide: [V°] 1{THEME 1)

that: [X l] _1L{} I I I !
0: [C] 10roll -ed 2 \

face: [V°o] 1{PATIENT : 1 GOAL 0}

from: [P0] _I{SouRcE 0}
Bill: [D2] person3 {}
the: [DO] 1_{}
Mary: [D2 ] person9 {}
to: [PO] _{GOAL : O}
run: [Vol .{THEME: 1}
roll: [V°] i{THEME: 1}
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Blil roll -fd.

{ACENT person3 , THEEME person,)

Syntactic Parameters:

[Vo final]
[V1 final]
[PO initial]
[Do initial]
[Io initial] 

C_

[11 final] (1
[C0 final]
[adjoin V"2 right.]
[adjoin lo left] I-

Lexicon:

cup: [N2] objectt {} I '

-ed: [I1] 1{}
John: [D2] pei-on,{}
slid: [Vol] I{THEME: I4 Il D1}
that: [X"] L{ r d I I'0: 1c l J-1roll -,,d t 1 20: [c°] ±1}

fac: [V°o] I{PATIENT : 1,GOAL :0 t

front: [P0 ] I{SoURcE: 01
Bill: [D ] person3 {}
thc: [Do] I{f}
Mary: [D2] person2 {}
to: [P')] II{GOAL : 0}
run: [Vo] I{THEME: 1}

roll: [Vol _._{THEME : 1}
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Tht (-u/) 111 -td.

{I1HEmE object,)

Syntactic Paramneters:

[V0 final]
[X1 final]
[P0 initial]
[D' initial] (

[1' finial]cI
[C0 final]
[adjoin V2 right.]
(adjoin 10 left] 1C

Lexicon:

c up. [N2) object,{ I)
-rd: [10] -j{}D

John.: [D 21 person, I}

slide: [V'0] -I{THEMvE :11 Ir I0 D
that: [XI] 10 1, 1~ tol 1c 1 X1

0 C0] 11I{}rP rol-e
face: [V0] 11{PATIENT: 1, GOAL 0)
fro M: [P0 ] -I{SOURCE :01
Bill- [D 2] person3 i
the: [D"] I11
Afary: [D 2 1 person,{}
to: [P0 ] I{GOAL :01
rull: [VIO] -IjIHEME: 1)
roll: [V')] -I{THEME : 1)
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Bill run -ed to Mary,.

{AGENT person,,, THEME person3 . GOAL person.,}

Syntactic Parameters:

[\, final]
[\, final]
[P" initial] (2
[Do initial][10 initial] ,

[1' final]
[C0 final]

[adjoin V2 right] (c[adjoin 1° left,] 
I

Lexicon: D

cup: [N'2] object 1 ){} Bill
-(d: [10] I{} i
John: [D-2 ] person { . , I.2-"
slidc: [V°] I{THEME 11 1 i

that: [X'] _1{} rui -(d D 1piIo: [C0] J_{1
face: [V°] I{PATIENT: 1. GOAL 01 \10 p0  2

from: [PO] _{SOURCE : 01 t

Bill: [D2] person 3 {} f to Mary
the: [DO] 1{1
Mary: [D2] person_.{)
to: [P0] IL{GOAL : 0}

run: [V°] .L{THiEME : 1}
roll: [V°] If{THEME :11
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Bill run -(d from John.

{AGENT: person3 . THEME: person 3. SOU'R('E person,)

Syntactic Parameters:

[V0 final]
[V' final]
[PO initial] ('-

[Do initial] 1

[10 initial]
[I1 final]
[C0 final]
[adjoin N,,2 right]
[adjoin 10 left.] V- co

Lexicon:

cup: [N2] objectI{} Bill
-ed: [10] j{} I
John: [D2] person,{} \,.
slide: [V°] _LITHEME: 1} - -2
that: [Xn] ._1f run -ed
0: [C1  I{} ,, - D V1 P1

face: [V°] _L{PATIENT :1, GOAL 01 I I
from: [PO] _{SoURCE: 01 2 V-

Bill: [D2 ] persona{ from John
th e: [Do] 1{}

Mary: [D-2] person,{}
to: [PO] I{GOAL : 01
run: [V°] I{THEME :1
roll: [V0] .{THEME : 1}
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Bill run -(d to I&h cup.

{AGENT person13 , TrHEME :person3 , GOAL object1 J

Syntactic Parameters:

[Vu final] (C-

[V' final] (1

[PO initial]
[Do initial]
[10 initial]
[11 final]
[Co final] 1-
[adjoin V2 right]
[adjoin Il left]

Lexicon: Bill

cup: [NW] objectI{}
-ed: [I°] 111 Vp I
John: [D 2] person 1 {} I I Sru n -(

slide: [Vol] ±{THEME 11 r dD P" I
that: [X"] 10{ I p "
0 [C] C {l 1 '2 D 2

face: [V0] ±{PATIENT : 1, GOAL :01 I 1

from: [PO] ±{SOURCE:0} t to D
Bill: [D-] person 3 f{ D 2N-

the: [DO] If I D

Mary: [D"] person,_{} the cup
to: [PO] ±{GOAL: 0O
run: [Vol] 1{THEME: 1}

roll: [V°l] .{THEME : 11
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The cup slide -fd from Johni to Mary.

{(THEME object1 SOURCE :person,. GOAL :person,,)

Syntactic Parameters:

[Vt1 filial]
[V1 final]C
[PO initial]

[Do initial] (

[10' initial]
[11 finial](d
[CO final]
[adjoin k,2 right.]
[adjoin 10 left] 1'21

Lexicon: D

cup: [N2] object,1 )} Do N I-ed: [] 10I I ý I2

John: [D 21 person1{} The c cup 2ld -ed
sli-dc: [V0] J..{THEME: 1}
that: [2v {}p

face: [\VO] 11{PATIENT 1, GOAL :01 1~ 1 11

from: [PO] IJSouRCE 0} P0  D2  to Afarg
Bill: [D:?] person3 0 D
the: [DO] 111 t from Johni
Mary: [D 21 person, I}
to: [PO] ..L{GOAL : 0)
run: [V'] 1{fTHEME : 1)
roll: [V'] 1{THEMEA:1
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John fact -(d Marq.

{ AGENT: person, PATIENT : person,, GOAL: person.,)

Syntactic Parameters:

[V° final]
[V1 final]
[pa initial]

[Do initial] (,2

[(l initial] I
[I1 final] (,I

[Co filial]

[adjoin V2 right.]

[adjoin to left] (I)

Lexicon: I

cup: [N"2] object D{} I

-ed: [10] I{} John 6 N-
John: [D2] person 1 {}

slide: [Vo] -{THEME 11 X, I / " I
that: [X"] -{}1 I D2

0: [Co] -_} fact -ed D2  N!
face: [V°] -I{PATIENT : 1,GOAL :0) 1 1

from: [PO] I{SOURCE 01 Mary t
Bill: [D2] person3 {}
the: [DO] 1-{}

Mary: [D ] person2 {}
to: [pO] -{GOAL : 0}

run: [VO] -{THEME : 1}
roll: [Vo] I_{THEME: 1}
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Appendix C

Abigail in Operation

This appendix enumerates the perceptual primitives recovered by ABIGAIL after processing the first
172 frames of the movie discussed int section 6.1. Figure 8.13 contains an event graph depicting the
temporal structure of these primitives.

[0,0J(PLACE [JOHN-part] PLACE-a)
[0,0] (SUPPORTED [JOHN-part))

[0,1](PL.ACE [(EYE JOHN)] PLACE-i)

[0,65) (PLACE [BALL-part) PLACE-13)
[0,65) (CONTACTS [TABLE BOX-part] [BALL-part])
[0,65] (SUPPORTS [TABLE BOX-part] [BALL-part])
[0,65] (PLACE [(LINE-sEGHENT3 BALL)] PLACE-il)

[0,71] (SUPPORTED [BALL-part])
[0,71] (SUPPORTED [(LINE-SEGMENT3 BALL)])
[0,71] (SUPPORTS [BALL-part] [(LINE-SEGMENT3 BALL)]

[0,171] (SUPPORTED [TABLE BOX-part])
[0,171](SUPPORTED [(BOTTOM BOXA)]
[0,171] (SUPPORTS [TABLE BOX-part] [(BOTTOM BOX)])

[1 ,64] (NOVIEG [JOIN-part))

[2,2) (ROTATING-COUNTER-CLOCKWISE [JOHN-part])
[2,2] (ROTATING [JOHN-part])

[2,15] (MOVING-ROOT [JOHN-part])
E2,15](TRANSLATING [(EYE JOHN)] PLACE-2)
[2,15](NOVING-ROOT [(EYE JOHN)]))
[2,15](MOVING [(EYE JOHNA))

[2,60] (TRANSLATING [JOHN-part] PLACE-9)

[16, 16) (SUPPORTED [JOHN-part])

267



268 APPENDIX C. ABIGAIL IN OPERA4TION

(18,17) (PLACE [(EYE JOHN)) PLACE-3)

[18,18) (ROTATING-COUNTER-CLOCKWISE [JOHN-part))
[18,18) (ROTATING [JOHN-part))

(18,32) (MOVING-ROOT [JOHN-part))
[18,32) (TRANSLATING [(EYE JOHN)) PLACE-4)
(18,32](MOVING-ROOT [(EYE JOHN)])
[18,32)(NovING [(EYE JOHN))

(33,33] (SUPPORTED [JOHN-part))

[33,34](PLACE [(EYE JOHN)) PLACE-S)

[35,35) (ROTATING-COUNTER-CLOCKWISE [JOHN-part))
[35,35) (ROTATING [JOHN-part))
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[35,48) (MOVING-ROOT [JOHN-part))
[35,48)(TRAISLATING [(EYE JOHN)) PLACE-6)
[35,48J (MOVING-ROOT ((EYE JOHN))
[35,48)(NOVING ((EYE JOHNA))

[49,49J (SUPPORTED (JOHN-part])

[49,5O)(PLACE [(EYE JOHN'~' PLACE-7)

[51.51) (ROTATING-COUNTER-CLOCKWISE [JOHN-part))
[51,51) (ROTATING [JOHN-part))

(51 ,58) (MOVING-ROOT (JOHN-part))

[51568)(TRANSLATING ((EYE JOHN)] PLACE-8)
[51,58)(MOVING-ROOT ((EYE JOHNA))
[51,58)(MOVING [(EYE JOHNA))

(59,64) (SUPPORTED [JOHN-part))

[59,70)(PLACE [(EYE JOHN)) PLACE-16)

[64,64) (TRANSLATING [JOHN-part) PLACE-10)

[65,65) (PLACE [JOHN-part) PLACE- 12)

[66,71) (TRANSLATING (BALL-part) PLACE-19)
[66,71) (MOVING-ROOT (BALL-part))
(66,71) (MOVING [BALL-part))
[66,71) (SUPPORTED [JOHN-part))
[66,71) (SUPPORTS [JOHN-part) [BALL-part))
(66,71) (TRANSLATING ULINE-SEGMENT3 BALL)] PLACE-17)
(66,71) (MOVING-ROOT [(LINE-SEGMENT3 BALL))
[66,71) (MOVING ((LINE-SEGMENT3 BALL))
[66,71) (SUPPORTS [(LINE-SEGMENT3 BALL)) [BALL-part))
[66,71) (SUPPORTED [BALL-part JOHN-part))
[66,71) (SUPPORTS [BALL-part JOHN-part) ((LINE-SEGMENT3 BALL))

[67,67) (TRANSLATING [JOHN-part) PLACE-is)
[67,67) (TRANSLATING [BALL-part JOHN-part) PLACE-14)
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[71,71] (FLIPPING [BALL-part])
[71,71] (ROTATING-COUNTER-CLOCKWISE [BALL-part])
[71,71] (ROTATING [BALL-part])
[71,71) (FLIPPING [JOHN-part])
[71,71] (ROTATING-COUNTER-CLOCKWISE [JOHN-part])
[71,71] (ROTATING-CLOCKWISE [JOHN-part])
[71,71] (ROTATING [JOHN-part])
[71.71] (MOVING-ROOT [JOHN-part])
[71,71] (SUPPORTS [BALL-part] [JOHN-part])
[71,71](TRANSLATING [(EYE JOHN)] PLACE-18)
[71,71] (ROTATING-COUNTER-CLOCKWISE [(EYE JOHN)])
[71,71](ROTATING [(EYE JOHN)])
[71,71] (MOVING-ROOT [(EYE JOHN)])
[71,71](MOVING [(EYE JOHN)])
[71,71] (ROTATING-CLOCKWISE [(LINE-SEGMENT3 BALL)])
[71.71] (ROTATING [(LINE-SEGMENT3 BALL)])
[71,71] (FLIPPING [BALL-part JOHN-part])
[71.71](ROTATING-COUNTER-CLOCKWISE [BALL-part JOHN-part])
[71,71] (ROTATING-CLOCKWISE [BALL-part JOHN-part])
[71,71) (ROTATING [BALL-part JOHN-part])
(71,71) (MOVING-ROOT [BALL-part JOHN-part])
[71,71](SUPPORTS [(LINE-SEGMENT3 BALL)] [BALL-part JOHN-part])

[72,72] (PLACE [BALL-part] PLACE-22)
[72,72](PLACE [(EYE JOHN)] PLACE-21)
[72,72](PLACE [(LINE-SEGMENT3 BALL)] PLACE-20)

[73,80](TRANSLATING [BALL-part] PLACE-25)
[73.80] (MOVING-ROOT [BALL-part])
(73,80] (MOVING [BALL-part])
[73,80] (MOVING-ROOT [JOHN-part])
[73,80](TRANSLATING [(EYE JOHN)] PLACE-24)
[73,80](MOVING-ROOT [(EYE JOHN)])
[73,80](MOVING [(EYE JOHN)])
[73,80](TRANSLATING U(LINE-SEGMENT3 BALL)] PLACE-23)
[73,80] (MOVING-ROOT [(LINE-SEGMENT3 BALL)])
[73,80] (MOVING [(LINE-SEGNENT3 BALL)M)
[73,80] (MOVING-ROOT [BALL-part JOHN-part])
[73,80] (MOVING-ROOT [BALL JOHN-part])

[81,82] (PLACE [BALL-part] PLACE-28)
[81,82](PLACE [(EYE JOHN)) PLACE-27)
[81,82] (PLACE [(LINE-SEGMENT3 BALL)] PLACE-26)
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[83,83] (ROTATING-CLOCKWISE [JOHN-part])
[83,83] (ROTATING [JOHN-part])

[83,83] (ROTATING-CLOCKWISE [BALL-part JOHN-part])

[83,83] (ROTATING [BALL-part JOHN-part])
[83,83] (ROTATING-CLOCKWISE [BALL JOHN-part])
[83,83] (ROTATING [BALL JOHN-part])

[83,97) (TRANSLATING [BALL-part] PLACE-31)

[83,97] (MOVING-ROOT [BALL-part])
[83,97] (MOVING [BALL-part])
[83,97] (MOVING-ROOT [JOHN-part])
[83,97](TRANSLATING [(EYE JOHN)] PLACE-30)

[83,97] (MOVING-ROOT [(EYE JOHN)M)

[83,97](MOVING [(EYE JOHN))
[83,97](TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-29)
[83,97] (MOVING-ROOT [(LINE-SEGMENT3 BALL)])
[83,97] (MOVING [(LINE-SEGMENT3 BALL)])

[83,97] (MOVING-ROOT [BALL-part JOHN-part])
[83,97] (MOVING-ROOT [BALL JOHN-part])

[98,99] (PLACE [BALL-part] PLACE-34)
[98,99](PLACE [(EYE JOHN)] PLACE-33)
[98,99](PLACE [(LINE-SEGMENT3 BALL)] PLACE-32)

[100,100] (ROTATING-CLOCKWISE [JOHN-part])
[100,100] (ROTATING [JOHN-part])

[100,100] (ROTATING-CLOCKWISE [BALL-part JOHN-part])
[100,100] (ROTATING [BALL-part JOHN-part])
[100,100] (ROTATING-CLOCKWISE [BALL JOHN-part])

[100,100] (ROTATING [BALL JOHN-part])

[100,113](TRANSLATING [BALL-part] PLACE-37)
[100,113] (MOVING-ROOT [BALL-part])
[100,113] (MOVING [BALL-part])
[100,113] (MOVING-ROOT [JOHN-part])
[100,113](TRANSLATING [(EYE JOHN)] PLACE-36)

[100,113] (MOVING-ROOT [(EYE JOHN)])
[100,113](MOVING [(EYE JOHN)])
[100,113] (TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-35)
[100,113] (MOVING-ROOT [(LINE-SEGMENT3 BALL)])
[100,113] (MOVING [(LINE-SEGMENT3 BALL)])
[100,113] (MOVING-ROOT [BALL-part JOHN-part])
[100,113] (MOVING-ROOT [BALL JOHN-part])

[114,115) (PLACE [BALL-part] PLACE-40)

[114,115](PLACE [(EYE JOHN)] PLACE-39)
[114,115] (PLACE [(LINE-SEGMENT3 BALL)] PLACE-38)
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[116,116] (ROTATIIG-CLOCKWISE [JOHN-part])
[116,116] (ROTATING [JOHN-part])
[116,116] (ROTATING-CLOCKWISE [BALL-part JOHN-part])
[116,116] (ROTATING [BALL-part JOHN-part])
[116,116] (ROTATING-CLOCKWISE [BALL JOHN-part])
[116,116] (ROTATING [BALL JOHN-part])

[116,130] (TRANSLATING [BALL-part] PLACE-43)
[116,130] (MOVING-ROOT [BALL-part])
[116,130] (MOVING [BALL-part])
[116,130] (MOVING-ROOT [JOHN-part])
[116,130](TRANSLATING [(EYE JOHN)] PLACE-42)
[116,130] (MOVING-ROOT [(EYE JOHN)])
[116,1303(MOVING [(EYE JOHN)])
[116,130] (TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-41)
[116,130] (MOVING-ROOT [(LINE-SEGMENT3 BALL)])
[116,130] (MOVING [(LINE-SEGMENT3 BALL)])
[116,130] (MOVING-ROOT [BALL-part JOHN-part])
[116,130] (MOVING-ROOT [BALL JOHN-part])

[131,131] (PLACE [BALL-part] PLACE-46)
[131,131](PLACE [(EYE JOHN)] PLACE-45)
[131,131](PLACE [(LINE-SEGMENT3 BALL)] PLACE-44)
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[132,132] (FLIPPING [BALL-part])
[132,132](TRANSLATING [BALL-part] PLACE-49)

[132, 132] (ROTATING-COUNTER-CLOCKWISE [BALL-part])
[132, 132] (ROTATING-CLOCKWISE [BALL-part])

[132,132] (ROTATING [BALL-part])
[132, 132] (MOVING-ROOT [BALL-part])
[132, 132] (MOVING [BALL-part])
[132,132] (FLIPPING [JOHN-part])
[132, 132] (ROTATING-COUNTER-CLOCKWISE [JOHN-part])
[132, 132] (ROTATING-CLOCKWISE [JOHN-part])
[132, 132] (ROTATING [JOHN-part])
[132,132] (MOVING-ROOT [JOHN-part])
[132,132](TRANSLATING [(EYE JOHN)] PLACE-48)
[132,132] (ROTATING-CLOCKWISE [(EYE JOHN))
[132,132](ROTATING [(EYE JOHN)])
[132,132] (MOVING-ROOT [(EYE JOHN)])
[132,132](MOVING [(EYE JOHN)M)
[132,132] (TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-47)
[132,132] (ROTATING-COUNTER-CLOCKWISE [(LINE-SEGMENT3 BALL)M)
[132, 132] (ROTATING [(LINE-SEGMENT3 BALL)))
[132, 132] (MOVING-ROOT [(LINE-SEGMENT3 BALL)])
[132,132] (MOVING [(LINE-SEGMENT3 BALL)])
[132, 132] (FLIPPING [BALL-part JOHN-part])
[132,132] (ROTATING-COUNTER-CLOCKWISE [BALL-part JOHN-part])
[132,132](ROTATING-CLOCKWISE [BALL-part JOHN-part])
[132,132] (ROTATING [BALL-part JUHN-part])
[132, 132] (MOVING-ROOT [BALL-part JOHN-part])
[132, 132] (FLIPPING [BALL JOHN-part])
[132, 132] (ROTATING-COUNTER-CLOCKWISE [BALL JOHN-part])
[132, 132] (ROTATING-CLOCKWISE [BALL JOHN-part])
[132, 132] (ROTATING [BALL JOHN-part])
[132, 132] (MOVING-ROOT [BALL JOHN-part])

[133,133] (PLACE [BALL-part] PLACE-52)
[133,133](PLACE [(EYE JOHN)] PLACE-51)
[133,133] (PLACE [(LINE-SEGMENT3 BALL)] PLACE-SO)

[134, 134] (ROTATING-COUNTER-CLOCKWISE [JOHN-part])
[134,134] (ROTATING [JOHN-part])
[134, 134](ROTATING-COUNTER-CLOCKWISE [BALL-part JOHN-part])
[134, 134] (ROTATING [BALL-part JOHN-part])
[134,134] (ROTATING-COUNTER-CLOCKWISE [BALL JOHN-part])
[134,134] (ROTATING [BALL JOHN-part])
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[134,147] (TRANSLATING [BALL-part] PLACE-55)
[134,147] (MOVING-ROor [BALL-part])
[134,147] (MOVING [BALL-part])
[134,147] (MOVING-ROOT [JOHN-part])
[134,147] (TRANSLATING [(EYE JOHN)] PLACE-54)
[134,147] (MOVING-ROOT [(EYE JOHN)])
[134,147](MOVING [(EYE JOHN)])
[134,147] (TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-53)
[134,147] (MOVING-ROOT [(LINE-SEGMENT3 BALL)])

[134,147] (MOVING [(LINE-SEGMENT3 BALL)])

[134,147] (MOVING-ROOT [BALL-part JOHN-part])
[134,147] (MOVING-ROOT [BALL JOHN-part])

[148,149] (PLACE [BALL-part] PLACE-58)

[148,149] (PLACE [(EYE JOHN)] PLACE-57)
[148,149](PLACE [(LINE-SEGMENT3 BALL)] PLACE-56)

[1s50,150] (ROTATING-COUNTER-CLOCKWISE [JOHN-part])
[150,150] (ROTATING [JOHN-part])

[150,150] (ROTATING-COUNTER-CLOCKWISE [BALL-part JOHN-part])
[150,150] (ROTATING [BALL-part JOHN-part])
[150,150] (ROTATING-COUNTER-CLOCKWISE [BALL JOHN-part])
[150,150] (ROTATING [BALL JOHN-part])

[150,163] (TRANSLATING [BALL-part] PLACE-61)
[150,163] (MOVING-ROOT [BALL-part])
[150,163] (MOVING [BALL-part])

[150,163] (MOVING-ROOT [JOHN-part])
[150,163](TRANSLATING [(EYE JOHN)] PLACE-60)
[150,163] (MOVING-ROOT [(EYE JOHN)])
[150,163](MOVING [(EYE JOHN)])

[150,163] (TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-59)
[150,163) (MOVING-REC.T [(LINE-SEGMENT3 BALL)])
[150,163] (MOVING [(LINE-SEGMENT3 BALL)])

[150,163)1 MOVING-ROOT [BALL-part JOHN-part])
[150,163] (MOVING-ROOT [BALL JOHN-part])

[164,165] (PLACE [BALL-part] PLACE-64)
[164,165](PLACE [(EYE JOHN)] PLACE-63)
[164,165] (PLACE [(LINE-SEGMENT3 BALL)] PLACE-62)

[166,166] (ROTATING-COUNTER-CLOCKWISE [JOHN-part])
[166,166] (ROTATING [JOHN-part])
[166,166] (ROTATING-COUNTER-CLOCKWISE [BALL-part JOHN-part])

[166,166] (ROTATING [BALL-part JOHN-part])
[166,166] (ROTATING-COUNTER-CLOCKWISE [BALL JOHN-part])
[166,166] (ROTATING [BALL JOHN-part])
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